next up previous
Next: Appendix D: Kalman filtering Up: Bibliography Previous: Appendix B: Wavelet transform

Appendix C: Proof of Lemma 2

The wavelet transform in Eq. (21) is a complex representation of the output of the analyzing filter in Eq. (2):

 
Xk(t) = $\displaystyle S_k(t)e^{j(\omega_k t + \phi_k(t))}$  
  := $\displaystyle \tilde{f}(a,b),\qquad a=\alpha^{k-\frac{K}{2}},b=t$ (48)

Taking the absolute value for both terms, we obtain

 \begin{displaymath}\vert X_k(t)\vert=S_k(t)=\vert\tilde{f}(\alpha^{k-\frac{K}{2}},t)\vert.
\end{displaymath} (49)

Similarly, comparing phase terms between Eqs. (48) and (21), we obtain

 \begin{displaymath}\omega_k t +\phi_k(t)=\arg (\tilde{f}(a,b)).
\end{displaymath} (50)

Since the phase spectrum $\arg(\tilde{f}(a,b))$ is represented by

 \begin{displaymath}\arg(\tilde{f}(a,b))=\arctan \frac{{\it Im}\{\tilde{f}(a,b)\}}{{\it Re}\{\tilde{f}(a,b)\}},
\end{displaymath} (51)

it becomes a periodical ramp function within

\begin{displaymath}-\pi \leq \arg(\tilde{f}(a,b)) \leq \pi.
\end{displaymath} (52)

Differentiating both terms in Eq. (50), we get

\begin{displaymath}\omega_k+\frac{d\phi_k(t)}{dt}=\frac{\partial}{\partial t}\arg(\tilde{f}(\alpha^{k-\frac{K}{2}},t)).
\end{displaymath} (53)

After clearing, we obtain

\begin{displaymath}\frac{d\phi_k(t)}{dt}=\frac{\partial}{\partial t}\arg(\tilde{f}(\alpha^{k-\frac{K}{2}},t))-\omega_k.
\end{displaymath} (54)

Hence, the instantaneous output phase $\phi _k(t)$ is represented by

\begin{displaymath}\phi_k(t)=\int \left(\frac{d}{dt}\arg\left(\tilde{f}(\alpha^{k-\frac{K}{2}},t)\right)-\omega_k\right)dt.
\end{displaymath} (55)


next up previous
Next: Appendix D: Kalman filtering Up: Bibliography Previous: Appendix B: Wavelet transform
Masashi Unoki
2000-11-07