next up previous
Next: About this document ... Up: Bibliography Previous: Appendix C: Proof of

Appendix D: Kalman filtering

The system of considering the Kalman filtering problem is a linear stochastic state-observation description as follows:

$\displaystyle {{\bf {x}}}_{m+1}={\bf {F}}_m {\bf {x}}_m + {\bf {G}}_m {\bf {w}}_m$ $\textstyle \mbox{({\bf {state}})}$    
$\displaystyle {{\bf {y}}_m}={\bf {H}}_m {\bf {x}}_m + {\bf {v}}_m$ $\textstyle \mbox{({\bf {observation}})},$    

where ${\bf {x}}_m$ and ${\bf {y}}_m$ are random variables, and ${\bf {F}}_m$, ${\bf {G}}_m$, and ${\bf {H}}_m$, are state transition matrix, observation matrix, and driving matrix, respectively.

In this system, mean and variance with ${\rm {x}}_0$, ${\rm {w}}_m$, and ${\rm {v}}_m$ are known. And ${\bf {F}}_m$, ${\bf {G}}_m$, ${\bf {H}}_m$, and ${\bf {v}}_m$ are known matrices. The Kalman filtering problem is to determine the minimum variance requirement $\hat{\rm {x}}_{m\vert m}$ from the observed ${\rm {y}}_m$, $m=0,1,2, \cdots, M$ as follows.

\begin{displaymath}\hat{\rm {x}}_{m\vert m}=E({\rm {x}}_m+{\bf {y}}_0,\cdots, {\rm {y}}_m)
\end{displaymath} (56)

The Kalman filter is called an algorithm that obtains a solution to the above problem [Brown and Hwang1992].

It is calculated by sequentially performing the following:[Brown and Hwang1992].

1.
Filtering equation
$\displaystyle \hat{{\bf {x}}}_{m\vert m}=\hat{{\bf {x}}}_{m\vert m-1}+{\bf {K}}_m({\bf {y}}_m-{\bf {H}}_m\hat{{\bf {x}}}_{m\vert m-1})$     (57)
$\displaystyle \hat{{\bf {x}}}_{m+1\vert m}={\bf {F}}_m\hat{{\bf {x}}}_{m\vert m}$     (58)

2.
Kalman gain

\begin{displaymath}{\bf {K}}_m=\frac{\hat{{\bf {\Sigma}}}_{m\vert m-1}{\bf {H}}_...
... {\Sigma}}}_{m\vert m-1}{\bf {H}}_m^{*T}+{\bf {\Sigma}}_{v_m}}
\end{displaymath} (59)

3.
Covariance equation for the estimated-error
$\displaystyle \hat{{\bf {\Sigma}}}_{m\vert m}=\hat{\bf {\Sigma}}_{m\vert m-1}-{\bf {K}}_m {\bf {H}}_m \hat{{\bf {\Sigma}}}_{m\vert m-1}$     (60)
$\displaystyle \hat{{\bf {\Sigma}}}_{m+1\vert m}=\hat{\bf {F}}_m{\bf {\Sigma}}_{m\vert m}{\bf {F}}_m^{*T}+{\bf {G}}_m {\bf {\Sigma}}_{w_m}{\bf {G}}_m^{*T}$     (61)

4.
Initial state

\begin{displaymath}\hat{\bf {x}}_{0\vert-1}=\bar{\bf {x}}_0, \qquad
\hat{\bf {\Sigma}}_{0\vert-1}={\bf {\Sigma}}_{x_0},
\end{displaymath} (62)

We remark that symbols $\bar{\qquad}$ and ${\bf {\Sigma}}$ are mean and variance of a random variable, respectively.


  
Figure 1: Auditory segregation model.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/filterbank.eps,width=0.9\textwidth}
\end{center}\vspace{5cm}
\end{figure}


  
Figure 2: Vector-plane of complex spectrum.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/Vector.eps,width=0.9\textwidth}
\end{center}\vspace{-5mm}
\end{figure}


  
Figure 3: Overview of signal-flow in the proposed model.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/SignalFlow.eps,width=0.8\textwidth}
\end{center}\vspace{-3mm}
\end{figure}


  
Figure: Characteristics of basic wavelet $\psi (t)$: (top panel) ${\rm {Re}}\{\psi (t)\}$, (bottom panel) $\hat{\psi}(f)$(gammatone filter at f0=600 Hz, N=4, bf=0.25).
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/gammatone.eps,width=0.9\textwidth}
\end{center}\end{figure}


  
Figure 5: Frequency characteristics of the wavelet filterbank (the criterion levels are 0 dB for K=128; -10 dB for K=64; and -20 dB for K=32.).
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/FBproperty.eps,width=0.9\textwidth}
\end{center}\end{figure}


  
Figure 6: Temporal variation of the fundamental frequency.
\begin{figure}
\vspace{30mm}
\begin{center}
\epsfile{file=FIGURE/F0dev.eps,width=0.9\textwidth}
\end{center}\vspace{30mm}
\end{figure}


  
Figure 7: Candidates for Ck(t) interpolated by the spline function.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/SPLINE.eps,width=0.9\textwidth}
\end{center}\vspace{3cm}
\end{figure}


      
Figure 8: AM complex tone f1(t).
Figure 9: Mixed signals f(t) (SNR=10 dB).
Figure: Extracted signal $\hat{f}_1(t)$.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/Signal1.eps,width=0.9\textwid...
...epsfile{file=FIGURE/ExtSignal1.eps,width=0.9\textwidth}
\end{center}\end{figure}


  
Figure: Segregation accuracy for simulation 1: (top panel) precision for the Ak(t), (bottom panel) spectrum distortion for the extracted signal $\hat{f}_1(t)$.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/Precision1.eps,width=0.9\text...
...FIGURE/ImpSDSig1.eps,width=0.9\textwidth}
\end{center}\vspace{-3mm}
\end{figure}


    
Figure 12: Mixed signals f(t) (SNR=10 dB).
Figure: Extracted signal $\hat{f}_1(t)$.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/MixSignal2.eps,width=0.9\text...
...epsfile{file=FIGURE/ExtSignal2.eps,width=0.9\textwidth}
\end{center}\end{figure}


  
Figure: Segregation accuracy for simulation 2: (top panel) precision for the Ak(t), (bottom panel) spectrum distortion for the extracted signal $\hat{f}_1(t)$.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/Precision2.eps,width=0.9\text...
...FIGURE/ImpSDSig2.eps,width=0.9\textwidth}
\end{center}\vspace{-3mm}
\end{figure}


      
Figure 15: LMA-synthesized vowel /a/ f1(t).
Figure 16: Mixed speech f(t) (SNR=10 dB).
Figure: Extracted vowel /a/ $\hat{f}_1(t)$.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/Signal3.eps,width=0.9\textwid...
...epsfile{file=FIGURE/ExtSignal3.eps,width=0.9\textwidth}
\end{center}\end{figure}


  
Figure: Segregation accuracy for simulation 3: (top panel) precision for the Ak(t), (bottom panel) spectrum distortion for the extracted signal $\hat{f}_1(t)$.
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/Precision3.eps,width=0.9\text...
...FIGURE/ImpSDSig3.eps,width=0.9\textwidth}
\end{center}\vspace{-3mm}
\end{figure}


  
Figure: Comparison of the amplitude spectrum of $\hat{f}_1(t)$ with the amplitude spectrum of f1(t).
\begin{figure}
\begin{center}
\epsfile{file=FIGURE/AmpSpec.eps,width=0.9\textwidth}
\end{center}\vspace{3cm}
\end{figure}


 
Table I: Definitions of symbols for the segregation problem.
Symbol Definition
Sk(t) instantaneous amplitude
$\phi _k(t)$ instantaneous output phase
Ak(t), Bk(t) instantaneous amplitude
$\theta_{1k}(t),\theta_{2k}(t)$ instantaneous input phases
$\theta_k(t)$ input phase difference
F0(t) Fundamental frequency
Ck,R(t), Dk,R(t), R-th-order polynomial
$\quad E_{0,R}(t)$ $\qquad$(differentiable, piecewise)
Ck(t) undetermined function


 
 
Table II: Constraints corresponding to Bregman's regularities.
Heuristic regularity (Bregman, 1993) Constraint
(i) Unrelated sounds seldom start or stop at exactly Synchronous of onset and offset
the same time.  
(ii) Gradualness of change. Gradualness of change
(a) A single sound tends to change its properties (piecewise-differentiable polynomial
smoothly and slowly. approximation and smoothness)
(b) A sequence of sounds from the same source (piecewise-differentiable polynomial
tends to change its properties slowly. approximation and smoothness)
(iii) When a body vibrates with a repetitive period, Harmonicity
this vibrations give rise to an acoustic pattern  
in which the frequency components are  
multiples of a common fundamental.  
(iv) Many changes that take place in an acoustic Correlation between the
event will affect all the components of the instantaneous amplitudes
resulting sound in the same way and at  
the same time.  


 
 
Table III: Specifications of the filterbank design
Symbol Definition  
fs sampling frequency 20 kHz
K channel number 128
W bandwidth 60 Hz - 6 kHz
a scale parameter $\alpha^p$
$\alpha$ scale 102/K
p index $ -\frac{K}{2} \leq p \leq \frac{K}{2}$
b dilation q/fs
q index $q\in {\bf {Z}}$


 
 
Table IV: Definitions of symbol for the Kalman filter.
Symbol Definition
observed signal ${\bf {y}}_m=X_k(t_m)$
state variable ${\bf {x}}_m=-C_{k,0}(t_m)$
observed noise ${\bf {v}}_m=X_{2,k}(t_m)$
system noise ${\bf {w}}_m=w_m$
state transition matrix ${\bf {F}}_m=\Delta C_k(t_m)$
observation matrix ${\bf {H}}_m=e^{j\omega_k t_m}$
driving matrix ${\bf {G}}_m=-1$


next up previous
Next: About this document ... Up: Bibliography Previous: Appendix C: Proof of
Masashi Unoki
2000-11-07