研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。リチウムイオン2次電池用シリコン負極を大幅に安定化する自己修復型ポリマーコンポジットバインダーを開発
リチウムイオン2次電池用シリコン負極を大幅に安定化する
自己修復型ポリマーコンポジットバインダーを開発
ポイント
- リチウムイオン2次電池の高容量化のため、シリコン負極が注目されているが、シリコン粒子の大きな体積変化等の問題によって安定した充放電が困難となっている。
- リチウムイオン2次電池用シリコン負極を安定化する目的で、BIAN(ビスイミノアセナフテン)構造を有する共役系高分子とポリアクリル酸との水素結合ネットワークから成るコンポジットバインダーを開発した。
- アノード型ハーフセルを構築し充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した。
- 充放電後における界面抵抗が極めて低いことや、充放電後の負極の構造的耐久性も高く、劣化は極めて軽微であることが分かった。
- 高容量放充電技術の普及を通して社会の低炭素化に寄与する技術への展開が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 物質化学フロンティア研究領域の松見 紀佳教授、バダム ラージャシェーカル講師、アグマン グプタ研究員らのグループは、リチウムイオン2次電池*1用シリコン系負極を大幅に安定化するポリマーコンポジットバインダーの開発に成功した。 |
【背景と経緯】
リチウムイオン2次電池開発においては、EV車の更なる普及を見据えたエネルギー密度の向上を目的として、従来型負極であるグラファイトの理論放電容量を大幅に上回るシリコンの活用に関心が高まっており、カーボンニュートラルの見地からも高容量蓄電池の早期実用化が望まれている。また、シリコンは地殻に豊富に含まれる元素でありコスト面の利点が明白で、元素戦略の観点からも活用が期待される。
一方、シリコン負極においては、充放電時における大幅なシリコン粒子の体積変化が問題となっており、シリコン粒子の大幅な体積膨張による破断などの問題がある。また、充放電によってシリコン上に形成された界面被膜の破壊、集電体からの剥離、シリコン上に生成するクラック上の新たなシリコン面からの電解液の分解による厚いSEI被膜形成などの諸問題による大幅な内部抵抗の上昇によって、電池性能の劣化にも至っている。
【研究の内容】
本研究においては、負極の環境で還元され伝導性を発現するn型共役系高分子バインダー(ビスイミノアセナフテン骨格を有する共役系高分子、P-BIAN)と、この高分子(ポリマー)と水素結合性ネットワークを形成するポリアクリル酸(PAA)を組み合わせることにより、内部抵抗の低減と自己修復機能との相乗的な効果によりシリコン系負極を大幅に安定化できるコンポジットバインダーを開発した(図1)。両ポリマー間の水素結合形成はXPS測定(N1s)から確認された。
また、本コンポジットバインダーを用いてアノード型ハーフセル*2[アノード:Si/C/(P-BIAN/PAA)/AB =25/30/25/20 by wt%]を構築し、充放電特性を評価したところ、600サイクル後に2100 mAhg-1を維持し、極めて高い安定性を示した(図2)。さらに、サイクリックボルタンメトリー*3からは、可逆的で明瞭なリチウム脱挿入挙動や、電解液の分解抑制が示された。
次に、動的インピーダンス測定(DEIS)を行ったところ、本系における充放電後のSEI抵抗は、比較対象のポリアクリル酸バインダー系の場合の約1/6程度となった。
充放電試験後に電池セルを分解し負極を分析したところ、XPSにおいて負極内部の諸元素の環境に由来するピークが明瞭に観測されたことから、表面に形成したSEIは非常に薄いことが分かった。加えて、SEM観測においては400サイクル後においてもクラック形成は極めて軽微であり、比較対象(ポリアクリル酸)と対照的であったことから、本系においては充放電後の界面抵抗が極めて低いことが明らかとなった。また、充放電後の負極のSEMによる分析結果においても構造的耐久性が高く、有意な劣化が見られないことが分かった。
本成果は、ACS Applied Energy Materials (米国化学会)のオンライン版に4月29日に掲載された。なお、本研究は、科学技術振興機構(JST)未来社会創造事業(JP18077239)の支援を受けて実施した。
【今後の展開】
活物質の面積あたりの担持量をさらに向上させつつ電池セル系のスケールアップを図り、産業応用への橋渡し的条件においての検討を継続する。(国内特許出願済み)
今後は、企業との共同研究を通して将来的な社会実装を目指す。高容量充放電技術の普及を通して、社会の低炭素化に寄与する技術への展開が期待される。
【論文情報】
| 雑誌名 | ACS Applied Energy Materials |
| 題目 | Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries |
| 著者 | Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi* |
| 掲載日 | 2022年4月29日 |
| DOI | 10.1021/acsaem.2c00278 |

|
図1.(a) 高分子化BIAN(P-BIAN)及びポリアクリル酸(PAA)の構造式
(b) P-BIAN/PAAコンポジットバインダーの設計戦略 (c)P-BIAN/PAAのコンポジット生成に伴う強靭さ及び自己修復能による力学的特性の向上のイメージ図 |

|
図2.(a) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルのサイクリックボルタモグラム
(b) P-BIAN/PAA系バインダーとPAAバインダーを有するSi系負極を用いたアノード型ハーフセルとの500 mAg-1における充放電サイクル特性の比較 (c) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルの充放電曲線(500 mAg-1) (d) Si/C/(P-BIAN/PAA)/AB負極を有するアノード型ハーフセルと比較系(PAAバインダー系)との容量維持率の推移の比較 |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
*3 サイクリックボルタンメトリー(サイクリックボルタモグラム):
電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法である。電気化学分野における汎用的な測定手法である。また、測定により得られるプロファイルをサイクリックボルタモグラムと呼ぶ。
令和4年5月12日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/05/12-1.htmlリチウムイオン2次電池の急速充放電を実現する負極活物質を開発 ~バイオベースポリマー由来高濃度窒素ドープカーボン~
リチウムイオン2次電池の急速充放電を実現する負極活物質を開発
~バイオベースポリマー由来高濃度窒素ドープカーボン~
ポイント
- リチウムイオン2次電池の急速充放電技術の価値が国際的に高まっており、これに適した材料の開発が期待されている。
- 耐熱性バイオベースポリマーであるポリベンズイミダゾールを焼成することにより、高濃度窒素ドープカーボンを得ることに成功した。
- 得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセルを構築し充放電試験を行ったところ、本活物質は急速充放電に対してグラファイトとの比較において大幅に優れた適性を示した。
- 急速充放電に適した電極材料として、リチウムイオン2次電池のみならず広範な蓄電デバイスへの応用展開が期待される。
| 北陸先端科学技術大学院大学 (JAIST) (学長・寺野 稔、石川県能美市)の先端科学技術研究科 松見 紀佳教授(物質化学領域)、金子 達雄教授(環境・エネルギー領域)、バダム ラージャシェーカル講師(物質化学領域)、東嶺孝一技術専門員、Yueying Peng元研究員、Kottisa Sumala Patnaik(博士前期課程2年)は、リチウムイオン2次電池*1の急速充放電を可能にする新たな負極活物質の開発に成功した。 |
【研究背景と内容】
今日、次世代リチウムイオン2次電池開発においては、高容量化、高電圧化、難燃化など多様な開発の方向性が展開されている。なかでも最も重要性を増しているものとして、急速充放電の実現が挙げられる。現状、ガソリン車にガソリンスタンドで給油するためには数分を要するのみであるため、電気自動車(EV)が要する長い充電時間は、消費者の購買意欲を低減させている主要因の一つと考えられる。そのような状況にもかかわらず、多くの国々は将来的なガソリン車の生産中止の意向を決定しており、今後、急速充電に対応する関連技術の国際的な価値は極めて高いものとなっていくことが予想される。これらの背景のもと、米国エネルギー省(DOE:Department of Energy)においても超高速充電(XFC:extreme fast charging)の目標として15分以内での充電の実現を掲げてきた。
アノード(負極)側の活物質において、充放電速度の向上に適用可能な設計戦略としては、炭素系材料における層間距離の拡張によりイオンの拡散速度を上昇させることに加え、窒素などのヘテロ元素ドープが潜在的に有効な手法として検討されてきた。しかし、層間距離やヘテロ元素濃度を自在に制御する手法は確立されていない。
そのような背景のもと、本研究グループでは、含窒素型芳香環密度が高く高耐熱性を有するバイオベースポリマー*2のポリベンズイミダゾールを前駆体とすることにより、焼成後に高濃度窒素ドープハードカーボン*3を得た(図1)。バイオベースポリマーを前駆体とすることにより、低炭素化技術としての相乗的効果が期待される。得られた材料は17 wt%という高濃度の窒素を有していた。低分子前駆体の場合には焼成過程で多量の含ヘテロ元素成分が揮発してしまうが、高耐熱性高分子を前駆体とすることで大幅に窒素導入率を向上させることができた。
また、ポリベンズイミダゾールを800℃で焼成して得られた窒素ドープカーボンに関してXRD測定で層間距離(dスペーシング)を観測すると3.5Åであり、通常のグラファイトの3.3Åと比較して顕著に拡張した(図2A)。一般に、広いdスペーシングは系内のリチウムの拡散を促し、リチウム脱挿入の速度を向上させる。ラマンスペクトルはId/Ig比が0.98と極めて高く、(通常のグラファイトでは0.18)、効果的な欠陥の導入によりイオン拡散において好影響を有することが期待された(図2B)。また、XPSスペクトル(N1s)においては、窒素がグラファイティック窒素、ピロリジニック構造、ピリジニック構造等としてそれぞれ導入されている様子を観測した(図2C)。
得られた窒素ドープカーボンを負極活物質としてアノード型ハーフセル*4を構築し充放電試験を行ったところ、本活物質は急速充放電に対して優れた適性を示した。同様の充放電条件においてグラファイトと比較して大幅に優れた放電容量を示した(図3)。また、13分充電条件(0.74 Ag-1)においては1,000サイクル後に153 mAhg-1 (容量維持率89%)を示し、1.5分充電条件(7.4 Ag-1)においては1,000サイクル後に86 mAg-1 (容量維持率90%)を示すなど、良好な耐久性を示した。さらにフルセルにおいても好ましい充放電挙動を示した。
なお、本研究は、戦略的イノベーション創出プログラム(スマートバイオ産業・農業基盤技術)の支援のもとに行われた。
本成果は、Chemical Communications (英国王立化学会)オンライン版に11月25日(英国時間)に掲載された。
【今後の展開】
前駆体である高分子材料においては様々な構造の改変が可能であるほか、焼成条件の相違においても様々な異なる高濃度窒素ドープハードカーボンの化合物が得られ、さらなる高性能化につながると期待できる。
前駆体高分子には様々な有機合成化学的アプローチを適用可能であり、本研究が示すアプローチにより、急速充放電能を示す負極活物質材料における構造―特性相関の研究の進展が期待できる。
今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す。急速充放電技術の普及を通して社会の低炭素化に寄与する技術への展開を期待したい。


図2. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのXRDパターンの比較、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)とグラファイトのラマンスペクトルの比較、(C) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)のXPS N1s スペクトル

図3. (A) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの充放電レート特性、(B) 800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)及びグラファイトを用いて作製した負極型ハーフセルの長期サイクル特性、(C) 各レートにおける(0.37, 0.74, 3.72, 7.44, 11.16, 18.60 Ag-1 )800oCで焼成したポリベンズイミダゾール(窒素ドープカーボン)を負極活物質としたハーフセルの長期サイクル特性
【論文情報】
| 雑誌名 | Chemical Communications |
| 題目 | Extremely Fast Charging Lithium-ion Battery Using Bio-Based Polymer-Derived Heavily Nitrogen Doped Carbon |
| 著者 | Kottisa Sumala Patnaik, Rajashekar Badam, Yueying Peng, Koichi Higashimine, Tatsuo Kaneko and Noriyoshi Matsumi* |
| 掲載日 | 2021年11月25日(英国時間)にオンライン版に掲載 |
| DOI | 10.1039/d1cc04931c |
【用語解説】
*1 リチウムイオン2次電池:
電解質中のリチウムイオンが電気伝導を担う2次電池。従来型のニッケル水素型2次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
*2 バイオベースポリマー:
生物資源由来の原料から合成される高分子材料の総称。低炭素化技術として、その利用の拡充が期待されている。
*3 窒素ドープカーボン:
典型的にはグラフェンオキシドにメラミン等の含窒素前駆体化合物を混合した後に焼成することにより作製される。従来法では可能な窒素導入量に制約があり、急速充放電用活物質の合成法としては不十分であった。一方、電気化学触媒やスーパーキャパシター用など様々なアプリケーションへの用途も広がりつつある材料群である。
*4 アノード型ハーフセル:
リチウムイオン2次電池の場合には、アノード極/電解質/Liの構成からなる半電池を意味する。
令和3年12月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2021/12/09-1.html「低密度ポリエチレン長鎖分岐の構造を明らかに」 -汎用ポリマーの高性能化に道-
「低密度ポリエチレン長鎖分岐の構造を明らかに」
-汎用ポリマーの高性能化に道-
ポイント
- ポリマーの物性に影響を及ぼす長鎖分岐の構造を世界で初めて直接計測
- ポリマーの合成・構造・物性の相関を解明し高性能化を実現する道を拓いた
|
北陸先端科学技術大学院大学(JAIST)(学長・浅野哲夫、石川県能美市)の先端科学技術研究科物質化学領域の篠原健一准教授と住友化学(株)先端材料開発研究所の柳澤正弘主任研究員は、ポリエチレンの長鎖分岐(LCB)の構造を液中高速原子間力顕微鏡(高速AFM)イメージング法によって世界で初めて明らかにした。
ポリマー材料の物性は高分子鎖の構造と強く相関しており、分岐構造を有する場合では分岐鎖長や分岐数などの微細構造によって材料物性は大きく変化する。しかしながら、高分子の構造が複雑であることと同時に分析法の限界から、とくにポリエチレンの長鎖分岐の微細構造は未解明であった。 今回篠原研究室と住友化学(株)の産学連携グループは、高圧法ポリエチレンのうちチューブラープロセスで製造された低密度ポリエチレン(LDPE)の高分子鎖の構造を高速AFMで1分子イメージングしたところ、低密度ポリエチレンの長鎖分岐の鎖長や分岐点間隔などの計測に成功した。その結果、162 nmの主鎖に3本のLCBが確認され、各LCBの長さは10, 31, 18 nmと計測された。また各LCBの位置は主鎖末端から33, 70, 78 nmにあった。 このようにポリマー鎖の構造を計測・数値化できた意義は大きく、これまで不明確であった重合反応条件と生成ポリマーの分子構造との関係、さらにポリマー材料物性とポリマー分子構造との関係を明確化する新しい研究開発手法が確立された。ポリマーの合成・分子構造・物性の相関を明らかにすることで、より高性能なポリマー材料の開発を実現する明確な分子設計指針を与える。 本成果は英国Scientific Reports誌(インパクトファクター 4.525)に7月5日(金)に公開された。 |

図(A)世界で初めて捉えたポリエチレンの長鎖分岐構造(AFM像)サイズ横278 nm、縦209 nm、高さ18 nm。(B)分子鎖長の計測結果。(C)ワイヤーモデル(赤色は主鎖、黒色は3本の各LCBを示す)。
<今後の展開>
今回開発された長鎖分岐構造の直接計測法を用いて、他のグレードのポリマーについても分岐鎖を直接計測することで、材料物性との相関関係をパラメータ化と同時に序列化する。これによって、ポリマー分岐構造と物性の分子レベルでの関係が体系化され、従来経験に頼っていた材料開発が効率化・加速化する。そして究極的には、望む特性の材料が製造できる「夢のオーダーメイド材料開発」が実現する。
<用語解説>
*1 ポリエチレン
世界で最も生産されているポリマー。略称はPE。エチレン(CH2=CH2)の重合反応によって得られるポリマー(高分子)。高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、超高分子量ポリエチレンなど種々のPEが製造されている。容器や包装用フィルムをはじめ様々な用途があり、人工股関節に使用される耐摩耗性のPEもある。
*2 長鎖分岐
炭素数が6以上からなる分子鎖を言う。一方、炭素数6未満の分子鎖は短鎖分岐と言う。長鎖分岐の長さや本数などの違いでポリマー材料の性質が大きく左右される重要な高分子の構造。
*3 高速AFM
一秒間に数枚以上の顕微鏡像を取得出来る原子間力顕微鏡(AFM)。ナノメートルスケールの空間分解能を有するのでポリマー鎖一本の構造やさらにその動きもリアルタイムで撮影できる最先端の顕微鏡。
*4 チューブラープロセス
管型(チューブラー)の重合反応器を用いる製造方法。PEの製造においてはフィルム用途に適する性質のポリマーを与える。
*5 低密度ポリエチレン
略称はLDPE。原料のエチレンを触媒と共に高温・高圧条件下で重合して得られるPE。単純な直鎖状高分子とはならず分子中に幾つもの短鎖分岐と長鎖分岐を有する。
<論文>
| 掲載誌 | Scientific Reports |
| 論文題目 | Direct Observation of Long-Chain Branches in a Low-Density Polyethylene |
| 著者 | Ken-ichi Shinohara, Masahiro Yanagisawa, Yuu Makida |
| https://www.nature.com/articles/s41598-019-46035-9 |
令和元年7月9日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2019/07/09-1.html学生のAniruddha Nagさんが、国際会議 10th Modification, degradability and stabilization of the polymer (MoDeSt 2018) において10th MoDeSt 2018 Grant Awardを受賞
学生のAniruddha Nagさん(博士後期課程3年、環境・エネルギー領域、金子研究室)が、国際会議 10th Modification, degradability and stabilization of the polymer (MoDeSt 2018)において 10th MoDeSt 2018 Grant Awardを受賞しました。
■受賞年月日
平成30年9月4日
■タイトル
Molecular modification and application of bio-based polybenzimidazole as stable polymer electrolyte
■論文概要
Conventional bio-based plastics are usually low performance plastics in terms of thermo-mechanical properties. We have successfully synthesized bio-based plastic consist of high thermo-mechanical properties comparable with engineering plastics. Polybenzimidazoles (PBIs) are a series of super high performance polymers attracting researchers' attention because of PBIs have a rigid aromatic structure and hetero rings in their backbone to induce a good stability. However, previously bio-based PBIs have ever been tried to prepare and base on such a background we have used renewable 3-amino-4-hydroxybenzoic acid (3, 4-AHBA) derived from Actinomycetes metabolite to produce bio-based PBI. Also, PBIs have active imidazole hydrogen (-NH) to receive chemical modification. Here we report N-boronation of the PBI via lithiation to be ionically conductive. The PBI was modified by triethylborane substitution to imidazole proton to create boronated PBI (B-PBI) with Li counter ion. Considerable battery performance was confirmed along with stable interfacial properties while using this as solid polymer electrolyte (SPE).
■受賞にあたって一言
It's always a privilege to have a chance of presenting your research as oral presentation on such a big platform like-"MoDeSt 2018" while some other senior researchers didn't get such opportunity other than poster presentation. Moreover, I am thankful to MoDeSt society and organizing committee for awarding me the "MoDeSt grant" and registration fee waive off. I would like to convey my sincere gratitude to Professor Tatsuo Kaneko for his continuous support, motivation and constructive guidance. I am also immensely grateful to Professor Noriyoshi Matsumi and Prof Raman Vedarajan for their necessary guidance. Lastly I would like to thank all of the Kaneko lab members for their support.

平成30年9月12日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2018/09/12-2.htmlエクセレントコアシンポジウム&グリーンイノベーションポリマーシンポジウム合同開催
標題について、エクセレントコアシンポジウム「The 3rd Symposium of the Center for High-performance Nature-derived Materials (Excellent Core)」及びグリーンイノベーションポリマーシンポジウム「The 4th International Symposium for Green-Innovation Polymers(GRIP2017)」を下記のとおり合同で開催しますので、ご案内いたします。
両シンポジウムは、本学のエクセレントコア「高性能天然由来マテリアル開発拠点」及び先端科学技術研究科マテリアルサイエンス系によるジョイント国際シンポジウムです。国内外からの招待講演者や本学教員による、持続可能社会の実現に向けたポリマー材料等に関する最先端の研究発表をお届けします。
参加は無料となっており、事前の参加申込み等も必要ありませんので、奮ってご参加下さい。
| 開催日時 | 平成29年9月26日(火)10:00~17:10 | ||||||||||||||||||||||||||||
| 会 場 | 知識科学系講義棟2階 中講義室 | ||||||||||||||||||||||||||||
| プログラム |
|
||||||||||||||||||||||||||||
| 使用言語 |
英語 |
多糖類から「ゼロ複屈折ポリマー」の開発に成功
![]()

多糖類から「ゼロ複屈折ポリマー」の開発に成功
| 1. 発表者 |
||||
| 檀上 隆寛 (東京大学 大学院農学生命科学研究科 生物材料科学専攻 博士課程) ロジャース 榎本 有希子 (東京大学 大学院農学生命科学研究科 生物材料科学専攻 特任助教(当時)/ 国立研究開発法人産業技術総合研究所 構造材料研究部門 主任研究員(現在)) 島田 光星 (北陸先端科学技術大学院大学 マテリアルサイエンス研究科 博士課程) 信川 省吾 (北陸先端科学技術大学院大学 マテリアルサイエンス研究科 助教(当時)/ 名古屋工業大学 大学院物質工学専攻 有機分野 助教(現在)) 山口 政之 (北陸先端科学技術大学院大学 先端科学技術研究科マテリアルサイエンス学系 教授) 岩田 忠久 (東京大学大学院農学生命科学研究科 生物材料科学専攻 教授/JST-ALCA ホワイトバイオテクノロジー・岩田チーム 研究代表者) |
||||
| 2. 発表のポイント |
||||
|
||||
| 3. 発表概要 |
||||
|
多糖類の1つであるプルランを出発原料とし、プルランの持つ特徴的な分子構造を保持したまま、簡単なエステル化により、光学特性に非常に優れたゼロ複屈折ポリマーの開発に成功しました。開発したゼロ複屈折ポリマーは、添加剤を一切加えることなくゼロ複屈折を発現するとともに、全ての可視光領域に対して、複屈折がゼロである優れた光学特性を持ち、機械物性、耐熱性、耐水性、成形加工性にも優れています。また、置換するエステル基の種類を変えることにより、ゼロ複屈折から高複屈折を持つさまざまな光学フィルムを作製することも可能であることから、偏光板保護フィルム(注4)や位相差フィルム(注5)として、多方面での利用が期待されます。
|
||||
| 4. 発表内容 |
||||
|
液晶ディスプレイは、スマートフォン、タブレットPC、液晶テレビなどに広く用いられています。液晶ディスプレイの基本構成材料の1つである偏光板を保護する目的で、さまざまなポリマー保護フィルムが使われています。一般的なポリマー保護フィルムは、セルローストリアセテート、シクロオレフィン樹脂、アクリル系樹脂などのポリマーから製造されていますが、その複屈折をゼロに近づけるために、多くの添加剤が混ぜられています。
本研究グループは今回、多糖類の一種であるプルランから、添加剤を全く必要としない「ゼロ複屈折ポリマー」の開発に成功しました。 原料として用いたプルランは、微生物によって生合成される水溶性多糖類の1つで、グルコースが2つのα-1,4結合と1つのα-1,6結合を規則正しく繰り返すことにより長くつながった、階段状の非常に珍しい分子構造を持っています(図1)。プルランは主に、食品添加剤、可食性フィルムや医療用カプセルなどとして利用されていますが、これまでプラスチックの原料として用いられることはありませんでした。 今回、プルランの特徴的な分子構造に着目し、分子構造中に存在する3つの水酸基(-OH)をエステル基に置換してプルランアセテートに変えることにより、特徴的な分子構造を残したままで、ゼロ複屈折を発現させることに成功しました(図2)。 開発したゼロ複屈折ポリマーは、ゼロ複屈折の発現に、添加剤を一切必要としません。これは、プルランの持つ特徴的な階段状の分子構造のため、分子配向が抑制されたためであると考えられます。また、熱延伸を施しても、分子配向の緩和が容易に起こることから、ゼロ複屈折の延伸フィルムも得られることがわかりました。さらに、このゼロ複屈折ポリマーは、全ての可視光領域(波長=380~750nm)において、ゼロ複屈折を示すことも発見しました。機械物性、耐熱性、耐水性、成形加工性にも優れていることから偏光板保護フィルムや位相差フィルムとして、さまざまな分野での利用が期待されます。 今後は、溶融押出成形などの工業手法により、ゼロ複屈折フィルムの作製を行いたいと考えています。自然界には、人工的には決して作り出すことができない、さまざまな特徴的な分子構造を持つ多糖類が存在します。今後は、それらの特徴的な構造を保持したまま、新規な高機能・高性能ポリマーの開発を行いたいと考えています。今回の成果を糸口として、石油由来の原料を使用しない、バイオベースのプラスチック創出技術を確立することで、二酸化炭素の排出削減につながることが期待されます。 本研究は、JST戦略的創造研究推進事業先端的低炭素化技術開発(ALCA)と文部科学省科学研究費補助金 基盤研究A(研究代表者:岩田忠久)の一環として行われました。深く感謝いたします。 |
||||
| 5. 発表雑誌 |
||||
| 雑誌名:Scientific Reports 論文タイトル:Zero birefringence films of pullulan ester derivatives 著者:Takahiro Danjo, Yukiko Enomoto-Rogers, Hikaru Shimada, Shogo Nobukawa, Masayuki Yamaguchi and Tadahisa Iwata* (*責任著者) DOI番号:10.1038/srep46342 URL: www.nature.com/articles/srep46342 日本時間4月18日(火)午後6時(イギリス時間18日(火)午前10時)に公開されました。 |
||||
| 6. 用語解説 |
||||
| 注1 プルラン デンプンを原料として黒酵母によって生合成される水溶性多糖類。グルコースが2つのα-1,4結合と1つのα-1,6結合を規則正しく繰り返した分子構造を持つ(図1)。 注2 エステル化 多糖類の水酸基(-OH)を、アセチル基(-OCOCH3)やプロピオニル基(-OCOCH2CH3)などのエステル基に化学的手法により置換すること。 注3 ゼロ複屈折ポリマー 物体中を光が透過する際、光の振動方向によって進む速度が異なる現象を複屈折と呼ぶ。一般にポリマーフィルムにおいても、分子が配向することにより複屈折が生じる。ゼロ複屈折ポリマーとは、種々の方法により複屈折をなくしたポリマーのこと。 注4 偏光板保護フィルム 液晶ディスプレイなどに用いられる偏光板を保護するために貼られるポリマーフィルム。このフィルムの複屈折は、可能な限りゼロであることが望ましい。 注5 位相差フィルム 光学補償フィルムの1つで、複屈折による光学的な歪みや視角方向による変調が原因で起こる表示の着色等を防止するために貼られるポリマーフィルムのこと。 |
||||
| 7. 添付資料 |
||||
|
|
||||
平成29年4月19日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2017/04/19-1.html「ポリマー材料フォーラム」ゴム技術フォーラム/高性能天然由来マテリアル開発拠点共催
本フォーラムは、ゴム技術フォーラムと本学のエクセレントコア「高性能天然由来マテリアル開発拠点」の共催です。エクセレントコアの教員を中心に、ポリマー材料(バイオポリマー、ナノコンポジット、ゴム)に関する最先端の研究発表をお届けするフォーラムです。参加は無料となっておりますので、奮ってご参加下さい。
| ■ 日 時 | 2016年11月14日(月) 13:00~17:30 |
| ■ 場 所 | マテリアルサイエンス系講義棟1階 小ホール |
| ■ 参 加 |
無料(参加申込・予約は不要です。直接会場にお越しください。) |
| ■ プログラム |
| 時 間 | 内 容 |
| 13:00-13:10 | 開会の挨拶 |
| 13:10-13:25 | 大学紹介-塚原 俊文 教授(マテリアルサイエンス系学系長) |
| 13:25-14:10 | 講演1-金子 達雄 教授(高性能天然由来マテリアル開発拠点長/環境・エネルギー領域) 「エキゾチックな未利用バイオ分子を用いたスーパーエンプラの開発」 |
| 14:10-14:55 | 講演2-谷池 俊明 准教授(高性能天然由来マテリアル開発拠点/物質化学領域) 「リアクターグラニュール技術を用いた新規ポリオレフィン系ナノコンポジットの開発」 |
| 14:55-15:10 | 休憩 |
| 15:10-15:30 | 講演3-桶葭 興資 助教(環境・エネルギー領域) 「界面不安定性による超高分子多糖類のマクロ空間認識」 |
| 15:30-15:50 | 講演4-Chammingkwan, Patchanee 助教(高性能天然由来マテリアル開発拠点/物質化学領域) 「In-Situ Grafting of Nanoparticles Through End-Funtionalized Polypropylene for High-Performance Nanocomposites 」 |
| 15:50-16:10 | 講演5-Ali, Mohammad Asif 博士研究員(環境・エネルギー領域) 「Environmentally degradable biobased plastics from renewable itaconic acid and their composites with montmorillonite 」 |
| 16:10-16:20 | 休憩 |
| 16:20-16:50 | 技術紹介-滝澤 俊樹(ゴム技術フォーラム(ブリヂストン・フェロー)) 「タイヤ用エラストマーの開発事例」 |
| 17:20-17:30 | 開会の挨拶 |
| ■ 連絡先 | 研究推進課 研究施設支援係(E-mail:sien) |
本学発ベンチャー企業「BioSeeds株式会社」と学生の加藤さんが「スタートアップビジネスプランコンテストいしかわ2025」で最優秀起業家賞・優秀起業家賞を受賞
10月28日(火)、石川県地場産業振興センターで開催された「スタートアップビジネスプランコンテストいしかわ2025」において、本学発ベンチャーであるBioSeeds株式会社が最優秀起業家賞を、学生の加藤裕介さん(博士後期課程3年、物質化学フロンティア研究領域、松村和明研究室)が優秀起業家賞を受賞しました。
本コンテストは、革新的な技術や独自性のあるビジネスプランをもとに石川県での起業を促進し、将来の成長が期待される起業家を認定するもので、平成19年から毎年開催されています。これまでに、バイオテクノロジー、IT関連など独自の技術を持つ企業や、地域活性化などをテーマとした企業など、ユニークなビジネスプランを含め、数多くのスタートアップ企業が誕生しました。
※参考:ISHIKAWA START UP!
■受賞年月日
令和7年10月28日
■最優秀起業家賞
新型RNA/DNA分析装置「BioMuRun(バイオミューラン)」の開発・製造そして世界への販売
BioSeeds株式会社 ビヤニ マニシュ氏
概要:
バイオミューランは、進化分子工学や電気化学などの技術を駆使して開発した装置です。新型コロナウイルスの流行時に浮き彫りになった、「高価な装置がないと検査ができない」「変異株が見分けられない」「大量の検査が困難」といった課題を解決する装置で、本体は1辺が12センチメートルのサイコロ型で、使い捨てのカートリッジをセットし、パソコンやタブレットに接続すれば、わずか5分で10検体を同時に検査が可能です。PCR検査と同等の高い精度を誇り、変異株の特定も可能。コロナだけでなく、インフルエンザやノロウイルス、結核などの検査など感染症に対応できます。
装置本体だけでなく消耗品のカートリッジで収益を上げるビジネスモデルを採用し、装置は石川県内の企業、カートリッジはインドで製造します。特許も取得済みで2026年に人口14億人を抱えるインド市場で、大学や研究機関向けに販売を開始。その後、日本市場でも販売を計画しています。2028年からは医療用途へも展開し、インドと日本、日本と世界の架け橋になろうと意欲を燃やしています。
受賞にあたって一言:
日本に来て28年目になります。BioMuRunは 2001年からコンセプトを創り、プロトタイプ1号から6号まで製作し本年やっと完成しました。インドと日本の合作で生まれた装置で、感染症の検査のみならず、DNA、RNAの分析など幅広く使用が可能です。
ポータブルで安価なこの装置をPCRなど大型機器を備えることのできない発展途上国などに普及し、将来のパンデミックに備えることを目指しています。ISICO主催のスタートアップビジネスプランコンテストで最優秀賞起業賞を頂き、その名に恥じぬよう石川県から世界に羽ばたく企業になるべく全力を尽くして参ります。引き続き皆様のご支援を期待しております。
バイオシーズ株式会社 社長 ビヤニ・マニシュ
バイオシーズ株式会社 社長 ビヤニ・マニシュ氏
■優秀起業家賞
新規凍結保存法を用いた豚精液の凍結保存事業
北陸先端科学技術大学院大学 博士後期課程3年 加藤裕介
概要:
本事業では、未だ実用化に至っていない「豚凍結精液」の確立を目指します。豚凍結精液は、現在広く普及している豚人工授精に多くの利点をもたらすだけでなく、豚精液の国際流通や付加価値の高い精子の販売といった、養豚業界の新たな市場を開拓する可能性を秘めています。
受賞にあたって一言:
このたびは優秀起業家賞を頂き、大変光栄に存じます。ファイナリストの中では唯一の学生でしたが、チームとして評価をしていただいたと思っております。本事業の共同研究者であり、指導教員である松村和明教授に、この場を借りて心より御礼申し上げます。また、本事業のブラッシュアップに多くのご助言をいただきました、株式会社SAKU代表取締役の谷沢鷹続様と石川県産業創出支援機構の皆様に、深く感謝いたします。
北陸先端科学技術大学院大学 博士後期課程3年 加藤裕介
博士後期課程3年 加藤裕介氏(右)
令和7年12月11日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/12/11-1.html特殊なダイヤモンドの針を開発し超高速で変化する電場の局所計測に成功
![]() ![]() ![]() |
| 国立大学法人筑波大学 国立大学法人 慶應義塾大学 |
特殊なダイヤモンドの針を開発し
超高速で変化する電場の局所計測に成功
NV中心と呼ばれる格子欠陥を導入したダイヤモンドを原子スケールの空間分解能を持つ原子間力顕微鏡(AFM)の探針(プローブ)に用い、二次元層状物質の表面近傍の電場をフェムト秒(1000兆分の1秒)・ナノメートル(10億分の1メートル)の時空間分解能で計測することに成功しました。
| ダイヤモンドの結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがあります。これをNitrogen-Vacancy(NV)中心と言います。そして、NV中心を導入したダイヤモンドに電界を加えると、その屈折率が変化するようになります。これは電気光学(EO)効果と呼ばれる現象で、ダイヤモンド単体では実現していませんでした。 本研究チームはこれまでに、NV中心を導入した高純度ダイヤモンドに1000兆分の1秒という極めて短時間だけパルス光を放出するフェムト秒レーザーを照射し、ダイヤモンドのEO効果を計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています。このことは、ダイヤモンドが超高速応答するEO結晶として利用可能で、電場を検出する探針(ダイヤモンドNVプローブ)となり得ることを示しています。 そこで本研究では、NV中心を導入したダイヤモンドの超高速EO効果と、原子スケールの空間分解能を有する原子間力顕微鏡(AFM)技術とを融合し、フェムト秒(fs=1000兆分の1秒)の時間分解能とナノメートル(nm=10億分の1メートル)の空間分解能で局所的な電場のダイナミックスを測定できる、時空間極限電場センシング技術を開発しました。そして、このセンシング技術を用いることで、二次元の原子層が層状に重なった二次元層状物質であるセレン化タングステン(WSe2)試料の表面近くの電場を500 nm以下かつ100 fs以下の時空間分解能でセンシングできました。 ダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究成果は、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開されることが期待されます。 |
【研究代表者】
筑波大学数理物質系
長谷 宗明 教授
北陸先端科学技術大学院大学ナノマテリアル・デバイス研究領域
安 東秀 准教授
慶應義塾大学理工学部
ポール フォンス 講師(研究当時、同大学同学部電気情報工学科教授)
【研究の背景】
ダイヤモンド中の不純物には窒素やホウ素などさまざまな種類があります。その中でも、点欠陥に電子や正孔が捕捉され、発光を伴う種類のものはダイヤモンドを着色させるため、「色中心:カラーセンター」と呼ばれます。色中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、温度や電場を読み取る量子センサー注1)として用いられています。
量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心注2)と呼ばれる複合欠陥を用いたセンサーは、まだまだ発展途上の技術ですが、高空間分解能・高感度が要求される細胞内計測やデバイス評価装置のセンサーへの応用など、新しい可能性が期待されています。
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬くフェムト秒超短パルスレーザー注3)を用い、NV中心を導入したダイヤモンドの電気光学(EO)効果注4)を実時間分解計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています参考文献 a)。このことは、ダイヤモンドが超高速応答するEO結晶になり、電場検出の探針(プローブ)となり得ることを示すものです。
これまでもダイヤモンドを原子間力顕微鏡(AFM)注5)と組み合わせた電場センシングの試みはなされていましたが、局所ダイナミックスを動的に評価できる手法はほとんどありませんでした。特に時間分解能に関しては、発光測定に基づく従来の手法ではナノ秒程度が限界であり、ピコ秒以下の超高速時間分解能に関しては、全く開拓されていませんでした。
【研究内容と成果】
本研究では、量子光学(フェムト秒超短パルスレーザーを用いたダイヤモンドのEO効果)と走査プローブ顕微鏡(SPM)の一種である原子間力顕微鏡(AFM)技術を融合することで、光の回折限界を超える空間分解能に加えて、今までの検出限界を超える超高速時間分解能で局所的な電場計測を実現することを目指しました(図1)。
極めて不純物が少ない高品質のダイヤモンド結晶の表面近傍(深さ40nm)に、密度を制御したNV中心を導入し、そのダイヤモンド結晶をレーザーカットおよび集束イオンビーム(FIB)技術注6)を駆使することで、先端径が500 nm以下のダイヤモンドNVプローブに加工することに成功しました。このダイヤモンドNVプローブを、フェムト秒超短レーザーを組み込むことが可能な、ピエゾ抵抗効果注7)に基づく自己センシング方式注8)のAFMのカンチレバーに取り付けました(図2)。
このシステムを用いて、まずガリウムヒ素(GaAs)半導体基板の表面電場を調べました。フェムト秒超短パルスレーザーの出力光をビームスプリッタで約10対1に分岐し、強い方を励起のためのポンプ光、弱い方を探索のためのプローブ光とします。電子が電流を運ぶn型GaAs試料は高強度のポンプ光で励起され、プローブ光はダイヤモンドNVプローブに入射されます(図3a)。まず、ダイヤモンドNVプローブの有無による時間分解EO信号の検出感度を確認するため、ダイヤモンドNVプローブを用いないマクロ計測により時間分解EO信号を計測したところ、励起直後(Time delay=時間遅延0 ps)に立ち上がり、数ps(ps=1兆分の1秒)以内に緩和しポンプ光を当てる前に戻る信号が得られました(図3b)。またNVセンターを導入したダイヤモンドNVプローブを通じて、n型GaAsの表面電場を検出することに成功しました(図3c)。ダイヤモンドNVプローブの導入によりEO信号の大きさは約1/42に減少しましたが、局所計測に成功したと言えます。
さらに二次元層状物質注9)であるセレン化タングステン(WSe2)単結晶をシリコン基板上に転写した試料を用いて実験を行いました。このWSe2試料では、場所によって結晶の厚さが異なっていますが、光学顕微鏡で銀白色のバルク(Bulk)結晶(厚さが10原子層以上の結晶)を見つけ、このバルク結晶と接する紫色の単層(1 ML)部分との界面に着目しました(図4a)。この厚さの異なる界面を用いて、局所的な表面電場の計測を行ったところ、単層部分とバルク部分のキャリア特性を反映した表面電場信号を、500 nm以下かつ100 fs以下の時空間分解能でセンシングすることに成功しました(図4a,b)。また時間分解EO信号の減衰を指数関数を用いてフィッティング(モデル化)したところ、単層部分では約200フェムト秒で緩和する成分のみが観測されました。一方、バルク部分では、この成分に加えて、約2psで緩和する遅い成分の寄与があることが分かりました(図4c)。このことは、単層部分では電場は基板との相互作用などで高速に緩和するのみなのに対し、バルク部分では、表面電場と結合したキャリアのバンド内緩和やバレー間緩和注10)が寄与していることを示しています。n型GaAsの時間分解EO信号による電場検出感度を見積もると、約100 V/cm/
(Hzは周波数)となりました。これは発光測定に基づく従来の手法で得られたマイクロ秒時間領域でのDC(直流)電場センシングと同等の検出感度を達成したことになります。最近のマイクロ秒時間領域でのAC(交流)電場センシングに関する検出感度には2桁及びませんが、本手法ではDC(直流)電場センシングと同等の検出感度で500 nm以下かつ、100フェムト秒というマイクロ秒を遙かに凌ぐ高い時空間分解能が得られることが示されたと言えます。
【今後の展開】
今回開拓した時空間極限センシング技術は、例えば炭化ケイ素(SiC)などのパワー半導体材料や燃料電池材料内での局所電場検知、トポロジカル絶縁体における局所電場検知など、基礎物理・化学のための基盤技術となることが期待されます。また、NV中心を含むダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究のアプローチは、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開可能であると言えます。例えばレーザー医療や分子レベルでの細胞の計測や制御を通じて、癌の治療をはじめとする量子生命科学の分野にも波及しうる革新的な展開が期待されます。
【参考図】

| 図1 本研究で行なった実験の概要図 ダイヤモンドNVプローブを用いた超高速ポンプ・プローブ電場センシング測定の概略図。試料上の各指定点においてAFMプローブを垂直に接近・後退させる「ピンポイントモード」で測定を行った。また試料はピエゾスキャナーを用いてx-y方向に走査される。 |

| 図2 本研究で作製したダイヤモンドNVプローブ概要図 (a) FIBで作製したダイヤモンドNVプローブ(探針)の走査型イオン顕微鏡像。マイクロメートルサイズに加工されたダイヤモンド結晶の一部が探針となっている。(b) ダイヤモンドNVプローブの探針部分のフォトルミネッセンス画像。赤色の部分から探針の直径が500 nm以下であることが分かる。(c)カンチレバーに取り付けたダイヤモンドNVプローブの光学顕微鏡像。カンチレバーは自己センシング方式用の回路部分の上部に位置しており、その先端に探針部分を含むダイヤモンドNVプローブが取り付けられている。 |

| 図3 ダイヤモンドNVプローブを用いたn型GaAs表面の電場センシング (a)ダイヤモンドNVプローブ先端近傍の表面バンド曲げと接触モードの配置図。表面状態はフェルミエネルギー(EF)を示すベル形状の破線で表され、下側のバンドは電子(-)で占有されている。VBは価電子帯、CBは伝導帯を示す。(b)ダイヤモンドNVプローブを用いないマクロ計測によるn型GaAsウェハーからの時間分解電気光学信号。(c)ダイヤモンドNVプローブを用いたn型GaAsからの局所的時間分解電気光学信号。(b)のマクロ計測の場合に比べてEO信号の大きさは約1/42になっているが、検出感度が十分であることが確認された。 |

| 図4 WSe2のEO信号の時空間測定 (a) ダイヤモンドNVプローブを用いた60 µm ×60 µm領域のトポグラフ画像。色の薄い部分がバルク(Bulk)結晶である。左上の挿入図は光学顕微鏡像であり、銀白色の部分はバルク(Bulk)結晶である。 局所計測では、単層(1ML)領域(P4)からバルク(Bulk)領域(P11)までを500 nmステップで計測する。(b)ダイヤモンドNVプローブを用いて得られた局所的な時間分解電気光学信号。P4からP11に行くに従い、単層(1ML)からバルク(Bulk)領域を測定している。図(b)の黒実線は、単一指数関数(単層=1ML領域のデータについて)または二重指数関数(バルク領域のデータについて)を用いたフィッティング(モデル化)を示す。(c) P4からP11の異なる位置における500 nmステップで得られた時間分解電気光学信号へのフィッティングにより得られた緩和時間定数。エラーバーは標準偏差を示す。 |
【用語解説】
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」はダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NV中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒(1000兆分の1秒)以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
物質に電場を加えると、電場の強度に応じて物質の屈折率が変化する効果のこと。
先端が鋭い探針で試料の表面を走査し、探針と表面との間に働く微少な力を測定して表面構造を原子スケールの高分解能で観察することができる顕微鏡のこと。AFM探針は、バネのようにしなるカンチレバーの先端に取り付けられており、コンタクトモードでは、この探針と試料表面を微小な力で接触させ、カンチレバーのたわみ量が一定になるように探針・試料間距離をフィードバック制御しながらX―Y方向(水平方向)に走査することで、表面形状を画像化できる。
イオンビーム(荷電しているイオンを高電界で加速したもの)を細く絞ったものである。物質の微細加工、蒸着、観察などの用途に用いられる。
半導体材料などに機械的なひずみ(力による変形)を与えたとき、材料の電気抵抗が変化する効果のこと。
通常のAFMでは、レーザー光をカンチレバー背面に照射し、反射したレーザービームの位置変化を位置センサーで計測することで、カンチレバーのたわみ量(表面構造によりたわんだ量)を読み取る。カンチレバーのたわみ信号を光で読み取ることから、これを光てこ方式と呼ぶ。一方、自己センシング方式のAFMでは、光てこ方式のようにレーザーと一センサーを必要とせず、ピエゾ抵抗効果などのカンチレバー自身の物理量の変化からカンチレバーのたわみ量を読み取ることができる。
共有結合が二次元方向だけに伸びている結晶のこと。原子一層レベルの二次元原子層が、ファンデルワールス力で積層して三次元結晶を形成している。炭素の二次元原子層であるグラフェンが積層したグラファイト、近年盛んに研究されるようになった遷移金属カルコゲナイドなどがある。本研究で調べたセレン化タングステン(WSe2)も遷移金属カルコゲナイドである。
半導体などにおいて、バレーとは電子バンドの極小点を指す。異なるバレー間にキャリアが散乱(遷移)することでエネルギーを失う緩和過程をバレー間緩和と呼ぶ。
【研究資金】
本研究は、科研費による研究プロジェクト(25H00849, 22J11423, 22KJ0409, 23K22422, 24K01286, 24H00416, 23H00264)、および国立研究開発法人 科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)(JPMJCR1875)の一環として実施されました。
【参考文献】
a) T. Ichikawa, J. Guo, P. Fons, D. Prananto, T. An, and M. Hase, 2024, Cooperative dynamic polaronic picture of diamond color centers. Nature Communications. 15, 7174 (10.1038/s41467-024-51366-x).
【掲載論文】
| 題名 | An ultrafast diamond nonlinear photonic sensor. (超高速ダイヤモンド非線形光センサー) |
| 著者名 | D. Sato, J. Guo, T. Ichikawa, D. Prananto, T. An, P. Fons, S. Yoshida, H. Shigekawa, and M. Hase |
| 掲載誌 | Nature Communications |
| 掲載日 | 2025年9月25日 |
| DOI | 10.1038/s41467-025-63936-8 |
令和7年9月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/09/26-1.html学生のNGUYEN, Kim Loc Thiさんらの論文が、Advanced Science (WILEY) 誌の表紙に採択
学生のNGUYEN, Kim Locさん(博士後期課程3年、サスティナブルイノベーション研究領域、桶葭研究室)らの「パターン形成:分割現象における「対称性の破れ」を実証」に係る論文が、Advanced Science (WILEY) 誌の表紙に採択されました。
■掲載誌
Advanced Science, volume 12, issue 32 (2025)
掲載日:2025年9月1日
■著者
Thi Kim Loc Nguyen, Taisuke Hatta, Koji Ogura, Yoshiya Tonomura, Kosuke Okeyoshi*
■論文タイトル
Symmetry breaking in meniscus splitting: Effects of boundary conditions and polymeric membrane growth
■論文概要
自然界には様々な幾何学パターンがあり、例えば雪の結晶の形は、気温と水蒸気の量で多様に変化します。また、乾燥環境は水の蒸発を引き起こし、生物であればその成長過程で非対称なパターンをつくります。これまで、この幾何学性や非対称性について、数理的な解釈がなされてきたものの、物理化学的実験に基づいた再現はなされてきませんでした。本研究は、界面分割現象のパターン形成において、対称性が破れることを実証しました。この分割現象は「ワインの涙」として知られる粘性フィンガリング現象を展開したものです。有限空間からポリマー水分散液が乾燥する際、空間中心からずれた位置にポリマーを析出して乾燥界面を分割します。これは、界面科学や高分子科学だけでなく、生体組織など自然界に見られる非対称なパターン形成の理解に重要です。
表紙詳細:https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.71215
論文詳細:https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202503807
プレスリリース:https://www.jaist.ac.jp/whatsnew/press/2025/06/04-1.html

令和7年9月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/09/08-1.html人と安全に協働できる"ソフトロボットリンク"を開発 触れてわかる、近づいて感じる-近接覚と触覚のハイブリッドセンシング技術「ProTac」
人と安全に協働できる"ソフトロボットリンク"を開発
触れてわかる、近づいて感じる-近接覚と触覚のハイブリッドセンシング技術「ProTac」
【ポイント】
- 透明・不透明を切り替えられるソフトスキンと視覚センサーを用い、近接センシングとスキン変形の解析による触覚センシングを備えたマルチモーダルソフトセンシング技術「ProTac」を開発
- 市販ロボットアームにも取り付け可能
- 従来の剛体リンクでは困難とされる、接触の多い環境下での動作制御が可能
- 農業や介護など、人とロボットが協働する作業への応用に期待
- AI駆動型センシングフュージョン技術
| 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域のクアン・ハン・ルウ研究員、ホ・アン・ヴァン教授らの研究チームは、透明・不透明を電圧により切り替えられるソフト素材と視覚センシング技術を融合し、近接・触覚の両モードを切り替えて検知できるマルチモーダルソフトセンシング技術「ProTac」を世界で初めて開発しました。ProTacを用いたソフトロボットリンクは、周囲の物体を検知する近接センシングとマーカー画像の変化から触覚情報を読み取る触覚センシングを一台で切り替えて行うことができ、人との接触が多い環境で安全に動作制御が可能です。なお、本研究成果は、2025年7月28日にIEEE Transactions on Robotics(T-RO)に掲載されました。 |
【研究概要】
近年、人と同じ空間で安全かつ柔軟に作業できるロボットのニーズが高まっています。これに応えるため、私たちの研究チームは、ソフト機能材料と画像や映像から情報を取得・解析する技術である視覚センシング技術を融合した新しいマルチモーダルソフトセンシング技術「ProTac」(図1)を開発しました。
ProTacは、電圧をかけることで透明・不透明を切り替えられるポリマーディスパースド液晶(PDLC)フィルム注1)と内蔵カメラを組み合わせています。透明時には視界を活用して周囲の物体の近接を検知し、不透明時にはマーカー画像の変化から触覚情報の取得を実現します。また、最新の深層学習ベースの視覚アルゴリズムを用いることで、安定したリアルタイムセンシングが可能です。

図1:ProTacのイメージ図
この技術を用いたソフトロボットリンクは、市販のロボットアームやカスタム製作されたソフトロボットにも取り付け可能で、障害物検知に基づく速度調整や接触時の反射動作など、多様な制御戦略を実現します。ProTacを備えたソフト多機能センシングアームは、人とロボットが密に連携する場面や、従来の剛体リンクでは困難な動作制御において高い性能を示しました。
今後は、この技術を手足や胴体などロボットの各部位に応用し、高機能なマルチモーダルスキンを備えたヒューマノイドロボットの実現が期待されます。また、農業、家庭サービス、介護分野など、幅広い分野での応用も見込まれます。
【研究資金】
本研究は、日本学術振興会 科学研究費補助金 特別研究員奨励費(24KJ1203)、国立研究開発法人 科学技術振興機構(JST)さきがけ(JPMJPR2038)による財政的支援を受けて実施されました。
【論文情報】
| 掲載誌 | IEEE Transactions on Robotics |
| 論文タイトル | Vision-based Proximity and Tactile Sensing for Robot Arms: Design, Perception, and Control |
| 著者 | Quan Khanh Luu, Dinh Quang Nguyen, Nhan Huu Nguyen, Nam Phuong Dam, Van Anh Ho |
| 掲載日 | 2025年7月28日 |
| DOI | 10.1109/TRO.2025.3593087 |
【用語説明】
電圧により透明・不透明を切り替えられる液晶材料。柔軟であり、ディスプレイやスマートウィンドウなどの光の透過を制御する用途に使用される。
令和7年8月22日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/08/22-1.html学生の福田さんがプラスチック成形加工学会第36回年次大会において優秀学生ポスター賞を受賞
学生の福田雄太さん(博士後期課程2年、物質化学フロンティア研究領域、山口政之研究室)が、一般社団法人プラスチック成形加工学会第36回年次大会において、優秀学生ポスター賞を受賞しました。
プラスチック成形加工学会は、プラスチック材料・成形条件・ベストな製品に至る全工程にわたって科学と技術のメスを入れ、プラスチックの新しい可能性を切り開くため、会員相互の情報交換や議論を行う場を提供しています。
同学会第36回年次大会は、『昨日まで見ていた夢、今日の努力に工夫を加え、いつか形を成す』 をスローガンに、令和7年6月18日・19日の2日間、東京都江戸川区のタワーホール船堀にて開催され、成形加工分野の最新技術や研究成果について、活発な議論と情報交換が行われました。
※参考:プラスチック成形加工学会第36回年次大会
■受賞年月日
令和7年6月18日
■研究題目、論文タイトル等
ポリヒドロキシブチレート系共重合体の引張特性
■研究者、著者
*福⽥雄太、Janchai Khunanya、砂川武宜(株式会社カネカ)、⼭⼝政之
■受賞対象となった研究の内容
バイオマスから製造されると共に海洋分解性を示すプラスチックであるポリヒドロキシブチレート系共重合体の力学特性に関する研究内容である。この材料から得られるフィルムは、石油由来の結晶性高分子と同様の力学的性質を示す。そのため既存の石油系プラスチックからの代替が進んでいる。本研究では、一度、変形を与えた後は架橋ゴムのような力学特性を示すことを明らかにした。今後、包装用材料などへの利用が期待できる技術となる。
■受賞にあたって一言
この度は、プラスチック成形加工学会第36回年次大会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている山口政之教授、研究室の皆さんにこの場をお借りして心より御礼を申し上げます。今後もよりいっそう研究活動に邁進していきたいと思います。
令和7年7月10日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/07/10-1.html第1回超越バイオメディカルDX研究拠点エクセレントコアセミナーを開催
6月3日(火)、本学イノベーションプラザ2階 シェアードオープンイノベーションルームにおいて、「令和7年度第1回超越バイオメディカルDX研究拠点エクセレントコアセミナー」を開催しました。
本セミナーでは、本学に新たにクロスアポイメント教員として着任したHak Soo CHOI 教授(ハーバード大学医学部 放射線腫瘍学講座 教授)を講師に迎え、「Bioengineering and Nanomedicine Program for Cancer Theranostics」をテーマに講演いただきました。
冒頭では、寺野稔 学長による開会挨拶が行われ、CHOI教授の着任に対する歓迎の意が述べられるとともに、今後の国際共同研究のさらなる発展に向けた期待が示されました。
CHOI教授の講演では、がんの診断と治療を同時に行う「セラノスティックス」の実現に向けた最先端の研究成果が紹介されました。とりわけ、独自に開発された蛍光イメージング技術と、薬剤の物理化学的特性と生体内動態の関係性に基づいた薬物設計戦略により、組織特異的な近赤外蛍光プローブの開発が進められていることが説明されました。これらの技術は、がん組織の可視化、画像誘導手術、光線治療などへの応用が期待されており、ナノ医療および分子イメージング分野における今後の展開に重要な示唆を与える内容となりました。
本セミナーは、CHOI教授と本学物質化学フロンティア研究領域の栗澤元一 教授との長年にわたる共同研究を背景に開催されたものであり、国際的な研究連携の深化とともに、若手研究者や学生との学術的交流の促進を目的としています。当日は、参加者との活発な質疑応答や意見交換も行われ、充実した議論の場となりました。
今後も本学では、超越バイオメディカルDX研究拠点の中核的活動として、世界トップレベルの研究者との交流を通じた学際的かつ国際的な研究の推進と、次世代研究者の育成に積極的に取り組んでまいります。


セミナーの様子
令和7年6月5日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/06/05-2.htmlナノ医療・バイオイメージング分野における国際連携を加速 ―ハーバード大教授が北陸先端科学技術大学院大学に本格参画-
ナノ医療・バイオイメージング分野における国際連携を加速
―ハーバード大教授が北陸先端科学技術大学院大学に本格参画-
北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)は、2025年4月1日付で、ナノ医療・バイオイメージング分野における世界的な研究者であるChoi, Hak Soo(チェ・ハクスー)教授を、先端科学技術研究科のクロスアポイントメント教員として迎え、本学での研究活動を開始しました。
Choi教授は、ハーバード大学医学部 放射線腫瘍学講座の教授であり、マサチューセッツ総合病院 分子イメージング研究センターの主任研究者として最前線の研究を統括するとともに、Dana-Farber/Harvard Cancer Centerにも所属し、がん研究と診断に関する世界的ネットワークの中核的存在として活躍しています。
韓国・全北大学校を卒業後、2004年に本学にて博士号(材料科学)を取得。その後、ハーバード大学にて研究を推進し、ナノメディシン、イメージング、バイオエンジニアリングを融合したがんの高感度診断・治療技術の開発に取り組んできました。これまでに、Nature Biotechnology、Nature Nanotechnology、Nature Medicine、Nature Communications、Advanced Materials、Science Translational Medicine などの国際トップジャーナルに多数の研究成果が掲載されており、米国国立衛生研究所(NIH)や国防総省(DoD)などからの大型研究助成を獲得しています。
今回の着任は、本学物質化学フロンティア研究領域の栗澤元一教授との長年にわたる共同研究を背景に実現したものであり、今後は、本学の「超越バイオメディカルDX研究拠点」との連携を軸に、研究成果の社会実装、若手研究者や学生との国際交流を通じて、グローバルトップの研究基盤の構築・強化に大きく貢献することが期待されています。
【セミナーのご案内】
このたび、Choi教授の本学参画を記念し、以下のとおり「超越バイオメディカルDX研究拠点エクセレントコアセミナー」を開催します。当日は、Choi教授より、これまでの研究成果および今後の取組みについて講演いただきます。つきましては、当日の取材・報道をお願いします。
|
講 演 者:CHOI, Hak Soo, Ph.D
北陸先端科学技術大学院大学 先端科学技術研究科 教授 Professor, Department of Radiology, Harvard Medical School Faculty, Cancer Research Institute, Dana-Farber/Harvard Cancer Center Director, Bioengineering and Nanomedicine Program, Mass General Hospital テーマ:「Bioengineering and Nanomedicine Program for Cancer Theranostics」
(バイオ工学とナノメディシンによるがんセラノスティックス*) 日 時:令和7年6月3日(火)10:30~12:00
場 所:北陸先端科学技術大学院大学(JAIST) イノベーションプラザ2F
シェアードオープンイノベーションルーム 申込方法:以下申込先までメールにて事前にお申込みください。
[申込先] 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点 教授 栗澤元一 E-mail:kurisawa |
*セラノスティックス...診断と治療を一体化した新しい医療技術
◆クロスアポイントメント制度とは】
研究者等が複数の大学や公的研究機関、民間企業等と雇用契約を結び、それぞれの組織で業務を行うことを可能とする制度です。本制度により、研究者等は所属の枠にとらわれることなく、複数の場で専門性を活かして活躍できるようになります。本制度の導入により、研究機関間の垣根を超えた知の交流や技術の橋渡しが加速されることが期待されており、研究の質やスピードの向上にも大きく貢献すると考えられます。
今回、本学が本制度を通じて、海外の研究機関に所属する研究者を迎えたことは、本学にとって初の取り組みです。今後は、この制度を活用して、国内外の優れた研究者とのネットワークを一層広げ、世界の先端科学技術研究のハブとしての機能強化を目指します。
令和7年5月29日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/05/29-1.html磁石と光で機能制御可能なナノ粒子の開発に成功! -高性能がん診断・治療に向けて-
磁石と光で機能制御可能なナノ粒子の開発に成功!
-高性能がん診断・治療に向けて-
【ポイント】
- 磁性イオン液体とカーボンナノホーンから成る複合体の作製に成功
- 当該ナノ粒子の磁場応答性とEPR効果により標的とする腫瘍内に効果的に集積し、マウスに移植したがんの可視化と、抗がん作用、光熱変換によるがん治療が可能であることを実証
- 当該ナノ粒子と近赤外光を組み合わせた新たながん診断・治療技術の創出に期待
| 北陸先端科学技術大学院大学(学長・寺野 稔、石川県能美市)物質化学フロンティア研究領域の都 英次郎教授らは、カーボンナノホーン*1表面に磁性イオン液体*2、近赤外蛍光色素(インドシアニングリーン*3)、分散剤(ポリエチレングリコール-リン脂質複合体*4)を被覆したナノ粒子の作製に成功した(図1)。得られたナノ粒子は、ナノ粒子特有のEPR効果*5のみならず、磁性イオン液体に由来する磁場駆動の腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、磁性イオン液体に由来する抗がん作用に加え、生体透過性の高い近赤外レーザー光*6により、インドシアニングリーンに由来するがん患部の可視化とカーボンナノホーンに由来する光熱変換による多次元的な治療が可能であることを実証した。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ粒子が生体に与える影響は極めて少ないことがわかった。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待される。 |
【研究背景と内容】
がんは世界における死亡の主な原因の1つである。世界保健機関 (WHO) によると、2020年には約1,000万人のがん患者が亡くなっている。とりわけ先進国の人口の高齢化と生活習慣の要因により、症例数は引き続き増加すると予想されている。科学、技術、社会の発展が大きく進歩したにもかかわらず、従来の抗がん剤の特異性の低さ、重篤な副作用、転移性疾患に対する有効性の限界などが相まって、がんは依然として重要かつ世界的な健康課題となっている。従って、より効果的かつ安心・安全な先進がん診断・治療技術の開発は急務である。
イオン液体は、低融点、低揮発性、高イオン濃度、高イオン伝導性などの特長を持つ室温で液体として存在する塩であり、コンデンサ用電解液や帯電防止剤、CO2吸収剤などの様々な産業用途に応用されており、とりわけ環境・エネルギー分野で注目されている。また、近年イオン液体に抗がん作用があることが見出されており、上記の分野のみならず医療分野への応用展開も期待されている。
そもそもイオン液体という物質は、陽イオン分子と陰イオン分子という極めてシンプルな2種類の構成要素で成り立っている。つまり、陽イオン側と陰イオン側の両方に多様な可能性があることから、両者の組み合わせとなるイオン液体には、膨大な種類が存在しうることになる。そのためイオン液体は「デザイナー溶媒」と呼ばれている。例えば、陽イオンが1-ブチル-3-メチルイミダゾリウム、陰イオンが塩化鉄であるイオン液体([Bmin][FeCl4])は、ネオジム磁石程度の磁場に応答する「磁性イオン液体」として知られている。磁石に反応する流体としては、この磁性イオン液体の他に、磁性流体という粉末磁石を懸濁させた油などが知られている。しかし、従来の磁性流体は、固体と液体に分離してしまいやすく不安定であった。磁性イオン液体は極めて安定であり、揮発せず、燃えないなどのイオン液体特有の性質を保持している。このため磁性イオン液体は、固体磁石にはできなかった液体磁石の新しい用途に向けて応用が期待されている。しかし、このような磁性イオン液体の高い潜在能力に反して、これまで報告されている磁性イオン液体の応用例は、化学物質の抽出や分離に限られていた。
一方、ナノ炭素材料の一つであるカーボンナノホーン(CNH)は、高い生体適合性と優れた物理化学的特性を有することが知られており、とりわけバイオメディカル分野で大きな注目を集めている。都教授は、CNHが生体透過性の高い波長領域(650~1100 nm)のレーザー光により容易に発熱する特性(光発熱特性)を世界に先駆けて発見し、当該光発熱特性を活用したがん診断・治療技術の開発を推進している(※1)。また、都研究室では、革新的がん診断・治療技術に向けてCNHのさらなる高性能化・高機能化に取り組んでいる(※2)。
(※1) https://www.jaist.ac.jp/whatsnew/press/2020/08/17_2.html
(※2) https://www.jaist.ac.jp/whatsnew/press/2024/08/22-1.html
本研究では、磁性イオン液体([Bmin][FeCl4])と光発熱素材(CNH)を複合化した新規ナノ粒子を開発し、がん診断・治療技術への可能性を調査した。より具体的には、[Bmin][FeCl4]、近赤外蛍光色素(インドシアニングリーン)、分散剤(ポリエチレングリコール-リン脂質複合体)を被覆したCNH([Bmin][FeCl4]‒PEG‒ICG‒CNH複合体)をがん患部に同時に送り込むことで、[Bmin][FeCl4]に由来する磁場応答性と抗がん作用に加え、生体透過性の高い近赤外レーザー光を用いることで、インドシアニングリーンに由来する近赤外蛍光特性を用いた患部の可視化やCNHに由来する光熱変換を利用した、新たながんの診断や治療の実現を目指した。
当該目標を達成するために、今回開発した技術では、簡便な超音波照射によって[Bmin][FeCl4]、近赤外蛍光色素(インドシアニングリーン)、ポリエチレングリコール-リン脂質複合体をCNH表面に吸着させることで、CNHを水溶液中に分散できるようにした(図1)。この方法で作製した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体は、7日以上の粒径安定性を有していること、細胞に対し高い膜浸透性を有し抗がん作用を発現すること、近赤外レーザー光照射により発熱が起こることが確認できたため、がん患部の可視化と治療効果について試験を行った。
大腸がんを移植して約10日後のマウスに、当該[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体を尾静脈から投与し、医療用バンデージを使って患部に小型のネオジウム磁石を24時間張り付けた後に740~790 nmの近赤外光を当てたところ、がん患部が蛍光を発している画像が得られた(図2A)。また、当該ナノ粒子が、ネオジウム磁石を用いない場合や磁性イオン液体を被覆していないナノ粒子(PEG‒ICG‒CNH複合体)に比較して、がん組織に効果的に取り込まれていることが分かった(図2A)。そこで、当該ナノ粒子([Bmin][FeCl4]‒PEG‒ICG‒CNH複合体 + 磁場)が集積した患部に対して808 nmの近赤外レーザー光を照射したところ、[Bmin][FeCl4]に由来する抗がん作用に加え、CNHの光熱変換による効果で5日後には、がんを完全に消失させることが判明した(図2B)。
一方、腫瘍内における薬効メカニズムを組織学的評価により調査したところ、とりわけ磁場印可とレーザー照射した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体においてがん細胞組織の顕著な破壊が起こることが明らかとなった。
さらに、[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体をマウスの静脈から投与し、生体適合性を組織学的検査、血液検査、体重測定により評価したが、いずれの項目でも[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体が生体に与える影響は極めて少ないことがわかった。
これらの成果は、今回開発した[Bmin][FeCl4]‒PEG‒ICG‒CNH複合体が、革新的がん診断・治療法の基礎に成り得ることを示すだけでなく、ナノテクノロジーや光学といった幅広い研究領域における材料設計の技術基盤として貢献することを十分期待させるものである。
本成果は、2025年3月3日に生物・化学系のトップジャーナル「Small Science」誌(Wiley発行)のオンライン版に掲載された。なお、本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、大学発新産業創出基金事業スタートアップ・エコシステム共創プログラム(JPMJSF2318)ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものである。
図1.様々な機能性分子を被覆したナノ粒子の作製と本研究の概念。
CNH: カーボンナノホーン、ICG: インドシアニングリーン、[Bmim][FeCl4]: 磁性イオン液体、
DSPE‒PEG2000‒NH2: ポリエチレングリコール-リン脂質複合体。
図2. ナノ粒子をがん患部に集積・可視化(A)し、光照射によりがんを治療(B)
(赤色の囲いは腫瘍の位置、赤色の矢印は消失した腫瘍の位置をそれぞれ示している)。
【論文情報】
| 掲載誌 | Small Science |
| 論文題目 | Multifunctional magnetic ionic liquid-carbon nanohorn complexes for targeted cancer theranostics |
| 著者 | Yun Qi, Eijiro Miyako* |
| 掲載日 | 2025年3月3日にオンライン版に掲載 |
| DOI | 10.1002/smsc.202400640 |
【用語説明】
飯島澄男博士らのグループが1998年に発見したカーボンナノチューブの一種。直径は2~5 nm、長さ40~50 nmで不規則な形状を持つ。数千本が寄り集まって直径100 nm程度の球形集合体を形成している。とりわけ、薬品の輸送用担体として期待されており、バイオメディカル分野で注目を集めている。
磁気力によってイオンが移動する液体。
肝機能検査に用いられる緑色色素のこと。近赤外レーザー光を照射すると近赤外蛍光と熱を発することができる。
ポリエチレングリコールとリンを含有する脂質(脂肪)が結合した化学物質。脂溶性の薬剤を可溶化させる効果があり、ドラッグデリバリーシステムによく利用される化合物の一つ。
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみ、がん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
令和7年3月6日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/03/06-1.html学生の福田さんと北畠さんがプラスチック成形加工学会第32回秋季大会成形加工シンポジア'24においてポスター賞を受賞
学生の福田雄太さん(博士後期課程1年、物質化学フロンティア研究領域、山口政之研究室)と北畠志温さん(博士前期課程2年、物質化学フロンティア研究領域、山口政之研究室)が一般社団法人プラスチック成形加工学会第32回秋季大会成形加工シンポジア'24においてポスター賞を受賞しました。
プラスチック成形加工学会は、プラスチック材料・成形条件・ベストな製品に至る全工程にわたって科学と技術のメスを入れ、プラスチックの新しい可能性を切り開くため、会員相互の情報交換や議論を行う場を提供しています。
第32回秋季大会成形加工シンポジア'24は、「美ら海に響け!成形加工の新たなハーモニー」をスローガンに、令和6年11月27日~28日にかけて、沖縄県にて開催されました。
※参考:プラスチック成形加工学会第32回秋季大会成形加工シンポジア'24
■受賞年月日
令和6年11月27日
【福田雄太さん】
■研究題目、論文タイトル等
水素化ジシクロペンタジエンの添加によるポリプロピレンのモルフォロジー制御
■研究者、著者
福田雄太、山口政之
■受賞対象となった研究の内容
食品包装フィルムなどに用いられているポリプロピレン(PP)の剛性を高める新しい手法として、PPと相溶する水素化ジシクロペンタジエンとの混合を提案した。この物質を添加すると、PPは結晶と非晶の中間状態であるメゾ相を経由して結晶化する。それによってPPの結晶構造を制御可能となり剛性が向上する。PPフィルムの薄膜化に繋がる技術である。
■受賞にあたって一言
この度はプラスチック成形加工学会第32回秋季大会成形加工シンポジア'24 においてポスター賞を受賞できたことを大変うれしく思っています。受賞にあたって日頃から熱心に指導してくださる山口政之教授および研究室のメンバーに深くお礼申し上げます。
【北畠志温さん】
■研究題目、論文タイトル等
ポリメタクリル酸メチルの添加によるポリプロピレンの流動誘起結晶化挙動の変化
■研究者、著者
北畠志温、山口政之
■受賞対象となった研究の内容
結晶性高分子であるポリプロピレン(PP)の流動誘起結晶化を飛躍的に促進する技術として、低分子量のポリメタクリル酸メチル(PMMA)を混合する手法を提案した。溶融状態においてPMMAは低粘度でありPP中で大きく変形するが、冷却過程で急激に増粘し、剛体粒子として作用する。その結果、結晶化温度近傍ではPPのみが変形を受け、流動誘起結晶化が進み成形体の剛性が高くなる。高剛性化を単純な方法で達成可能な新技術となる。
■受賞にあたって一言
この度は、プラスチック成形加工学会第32回秋季大会成形加工シンポジア'24におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている山口政之教授、研究室の皆さんにこの場をお借りして心より御礼を申し上げます。今後もよりいっそう研究活動に邁進していきたいと思います。
令和7年1月17日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/01/17-1.html





