研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。物質化学フロンティア研究領域の都教授らの研究チームが「S2S Japan 2025」において、ファイナリストに選出
物質化学フロンティア研究領域の都 英次郎教授らの研究チームが、アカデミア発ディープテック・スタートアップ支援プログラム 「S2S Japan 2025(Science to Startup Japan)」 において、ファイナリスト(最終選考進出者) に選出されました。
本プログラムは、革新的な大学発シーズをグローバル投資家・産業界へ橋渡しすることを目的としており、世界的に有望な技術・研究成果が選抜されます。
都教授らの研究チームは、「Nature's Own Bacterial Duo: A Gene-Free, Safe, and Powerful Cancer Therapy (AUN)」と題した遺伝子改変を用いない天然細菌コンソーシアムAUN(阿吽)による新規がん治療技術の研究開発に取り組んでいます。
AUNは、免疫非依存的かつ高い安全性を有する新しい細菌がん治療法として注目を集めており、その科学的独創性と社会的インパクトが高く評価されました。
都教授は、2025年11月13日(木)開催の「S2S Japan Symposium」 にて、同技術の研究成果と事業化ビジョンについて発表を行う予定です。
【参考情報】
・S2S Japan公式サイト: https://s2s-japan.com/
・プログラム主催: S2S Japan運営事務局
・会場: 東京ミッドタウン八重洲カンファレンス(予定)
令和7年10月16日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/10/16-1.html金沢大学・北陸先端科学技術大学院大学 第5回共同シンポジウムを開催

9月29日(月)、本学小ホールにおいて、金沢大学・北陸先端科学技術大学院大学 第5回共同シンポジウムを開催しました。
金沢大学と本学は、平成30年度より融合科学共同専攻における分野融合型研究を推進してきましたが、令和5年度からは、融合科学共同専攻の活動にとどまらず、両大学間の共同研究の発展と促進を目的に共同シンポジウムを開催しており、今回で第5回目の開催となります。
「量子科学」をテーマに開催した今回は、寺野 稔学長による開会挨拶後、金沢大学 ナノマテリアル研究所 石井 史之 教授、本学 次世代デジタル社会基盤研究領域 リム 勇仁 教授、金沢大学 理工研究域電子情報通信学系 李 睿棟 准教授、本学 ナノマテリアル・デバイス研究領域 安 東秀 准教授にそれぞれ量子科学に関する先進的な研究開発についてご講演いただき、金沢大学 和田 隆志学長の挨拶をもって閉会となりました。
また今回は、両大学の教員や学生等による量子科学に関する研究内容のポスター展示も行われ、参加者にとって多くの研究者の最新研究に触れる機会となりました。
近年、量子の特性を積極的に活用する量子技術が急速に発展しており、量子コンピュータや量子計測・センシング等の分野での応用が期待されていることから、量子科学は大変注目度が高い研究分野となっています。そのため、今回の本シンポジウムには、両大学から多くの方が参加され、講演者への質疑や研究者間の情報交換も大変活発なものとなりました。
本シンポジウムをきっかけに今まで多くの研究連携が両大学間で生じております。本シンポジウムが両大学間のさらなる研究連携発展の端緒となるよう、今後も推進していきます。

開会の挨拶をする寺野学長

講演①「『保護された量子』を探る ~計算科学が拓く新物質デザイン~」
石井 史之 教授(金沢大学 ナノマテリアル研究所)

講演②「The Past, Present, and Future of the Quantum Internet」
リム 勇仁 教授(本学 次世代デジタル社会基盤研究領域)

講演③「信頼性の高い分散型量子メタバースの実現に向けて」
李 睿棟 准教授(金沢大学 理工研究域電子情報通信学系)

講演④「ダイヤモンドNV中心を用いた、量子センシング、量子通信、量子コンピュータへの応用」
安 東秀 准教授(本学 ナノマテリアル・デバイス研究領域)

閉会の挨拶をする金沢大学 和田学長
研究者間の歓談時間の様子
令和7年10月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/10/08-1.htmlユネスコ無形文化遺産「金沢金箔」の薄さと輝きを生む謎を解明 ―伝統工芸と材料科学が出会う、新たな発見―
![]() ![]() |
北陸先端科学技術大学院大学 大阪大学 |
ユネスコ無形文化遺産「金沢金箔」の薄さと輝きを生む謎を解明
―伝統工芸と材料科学が出会う、新たな発見―
【ポイント】
- 金沢金箔は、打ち延ばす工程によって箔全体を立方晶{001}集合組織(結晶粒の結晶方位が特定の方位に集中している状態)に配向させていることを解明。
- 金箔の上下に和紙を挟んで叩くことで温度上昇を防ぎ、再結晶化や回復を阻止。
- 通常は働かない{110}すべり系(原子の層がずれて動く仕組み)が特別に活性化し、箔全体の均一な薄さと輝きを実現。
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域のXU, Yuanzhe大学院生(博士後期課程)、麻生浩平講師、村田英幸教授、大島義文教授、大阪大学 超高圧電子顕微鏡センターの市川聡特任教授(常勤)の研究グループは、最新の電子顕微鏡技術により、ユネスコ無形文化遺産に登録されている金沢金箔の箔打ち工程で「再結晶や回復を防ぐ工夫」や「特殊な滑り面の働き」を確認することに成功し、金沢金箔の薄さと輝きを保つ仕組みを世界で初めて解明しました。この成果は、金沢金箔の保存・継承に貢献するだけでなく、将来的にナノ材料や高機能薄膜の開発にもつながる可能性があります。 本研究成果は、2025年9月26日 (英国標準時間)に科学雑誌「npj Heritage Science」誌のオンライン版で公開されました。 |
【研究概要】
金沢金箔(図1(a))は、寺社仏閣や伝統工芸品を飾るだけでなく、文化財の修復に不可欠な素材です。その特徴は「世界で最も薄い金属箔」(わずか100ナノメートル=髪の毛の約1/1000)という極薄性と、変わらない光沢にあります。この魅力から、ユネスコ無形文化遺産に登録されました。これまでの研究では、金沢金箔が安定した{001}集合組織を形成することは知られていましたが、その過程は不明でした。通常の金属では、箔打ちにより{110}集合組織が発達しますが、同時に再結晶や回復が起き、面内の結晶方位はランダムになると考えられていました。したがって、なぜ金沢金箔が均一で安定した{001}集合組織を示すのかは長年の謎でした。この謎を解き明かすことは、伝統工芸の継承と材料科学の進展の双方にとって重要な課題です。本研究では、最先端の技術である、電子後方散乱回折(EBSD)*1と世界最高加速電圧の超高電圧透過電子顕微鏡(UHVEM)*2 (加速電圧 2MV)を用いて、無加工で系統的に金沢金箔の分析を行いました。その結果、従来の金属学では予想されなかった「非八面体すべり系」という特殊な変形が室温の槌打ち工程で活性化し、金箔の結晶配向を整えることを明らかにしました。
本研究では、製造の中間段階にあたる「金澄(約1 μm)」と最終段階の「金箔(約100 nm)」を対象とし、電子後方散乱回折(EBSD)*1および超高電圧透過電子顕微鏡(UHVEM)*2を用いて局所的な結晶性の調査を行いました。その結果、金澄は、面内の結晶方位はランダムな{110}集合組織となっていましたが、転位密度が高く、再結晶が起きていないことがわかりました。一方、最終段階の金箔は、面内の結晶配向も高い{001}集合組織となっていました(図1(b))。ただし、転位密度は著しく増加しており、回復や再結晶が生じていないことを示唆していました。加えて、{110}面に平行な多数のすべり帯があり、その多くが直交していることを観察しました(図1(c))。この事実は、非八面体的な{110}-<110>すべり系が活性化していることを示唆しています。通常の面心立方晶(FCC)金属では、このような非八面体のすべり系が動くことはなく、金箔が特殊な変形状態にあることがわかりました。
以上の結果から考察を行い、金沢金箔は従来のFCC金属とは異なる変形メカニズムによって特異な集合組織を形成することが分かりました。具体的には、熱間圧延や焼鈍処理を施した金属材料と異なり、金沢金箔は再結晶や回復を伴わずに加工が進行しています。そのため、箔打ち過程において転位が絡み合うため、通常活性化する{111}-<110>すべり系が抑制されます。また、膜厚が転位ループのサイズに近い200 nm程度になると、転位ループの一部が表面を突き抜けるため、薄膜全体を貫通するらせん転位が多数残存します。これらのらせん転位は動きやすいため、交差すべりが生じやすくなります。この交差すべりが進化した結果、非八面体的な{110}-<110>すべり系が活性化します。この{110}-<110>すべり系は、箔打ち方向に対し、結晶方位を[110]から[001]へ徐々に回転させることができます。なお、加工時に金箔の上下に和紙を挟んで叩くことで、表面摩擦を低減するとともに温度上昇を防いでいました。つまり、この温度制御によって再結晶や回復が抑制され、上述したような特殊な変形が実現したと説明できます。
本研究の成果は、金沢金箔という無形文化遺産の科学的理解を深め、伝統技術の保存・継承に確かな裏付けを与えるものです。これにより、文化財修復における信頼性の向上や、安定供給に向けた技術支援が可能になります。さらに、極薄金属膜における特殊な変形メカニズムの知見は、構造敏感な次世代のナノ材料や高機能薄膜デバイスの開発にも応用が期待されます。具体的には、電子材料、センサー、装飾材など、従来にない性能やデザイン性を備えた新しい製品の創出につながる可能性があります。
図1 (a) 金沢金箔の写真。(b)金沢金箔の電子後方散乱回折(EBSD)から得た方位マップ。色は、箔打ち方向に対する結晶方位を示します(赤は、[001]方位)。(c) 最終段階の金沢金箔のTEM像。黒い帯に対応する[110]方位に沿ったすべり帯は、お互いに直交しています。 |
【論文情報】
雑誌名 | npj Heritage Science |
論文名 | Deformation mechanism behind the unique texture of Kanazawa gold leaf |
著者 | Yuanzhe Xu, Satoshi Ichikawa, Kohei Aso, Hideyuki Murata, and Yoshifumi Oshima |
掲載日 | 2025年9月26日 |
DOI | 10.1038/s40494-025-02055-5 |
【用語説明】
材料表面で後方に散乱した電子回折の菊池パターンを解析し、ナノメートルの分解能で結晶方位、組織、転位密度のマップを得ることができます。
通常の透過電子顕微鏡の加速電圧が100-200 kVであるのに対し、超高電圧透過電子顕微鏡の加速電圧は、2MVと一桁大きい。そのため、入射電子の透過能が高く、厚い試料の内部構造を観察することができます。本研究の金箔、金澄を観察用に薄片加工することなくそのまま観察することができます。
令和7年10月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/10/07-1.html「世界で最も影響力のある科学者トップ2%」に本学から8名の教員が選出
エルゼビア社(寄稿者:スタンフォード大学John P.A. Ioannidis教授)が2025年9月19日に更新・発表した、科学分野で影響度の高い科学者を特定する「標準化された引用指標に基づく科学著者データベース"Updated science-wide author databases of standardized citation indicators"」の最新版において、本学から「単年(single recent year)」区分(2024年)で8名(「生涯(career-long)」区分で10名)の在籍教員が選出されました。
このリストは、エルゼビア社が提供する抄録・索引データベースScopusに基づき、22の科学分野と174のサブ分野において、5本以上の論文を発表した世界中の科学者を対象としたもので、各サブ分野で被引用数の上位2%に該当する研究者が毎年選出されています。
2024年単一年度(single recent year)区分 8名 ※研究領域順
氏名、英語表記 | 研究領域 | ランクされたサブ分野 |
クサリ 准教授 Koohsari, Mohammad Javad |
創造社会デザイン | Public Health| Urban & Regional Planning |
藤﨑 英一郎 教授 Fujisaki, Eiichiro |
コンピューティング科学 | Artificial Intelligence & Image Processing| Networking & Telecommunications |
上田 純平 准教授 Ueda, Jumpei |
物質化学フロンティア | Applied Physics| Nanoscience & Nanotechnology |
栗澤 元一 教授 Kurisawa, Motoichi |
物質化学フロンティア | Biomedical Engineering| Polymers |
後藤 和馬 教授 Gotoh, Kazuma |
物質化学フロンティア | Inorganic & Nuclear Chemistry| Nanoscience & Nanotechnology |
長尾 祐樹 教授 Nagao, Yuki |
物質化学フロンティア | Energy| Polymers |
西村 俊 准教授 Nishimura, Shun |
物質化学フロンティア | Organic Chemistry| Physical Chemistry |
山口 政之 教授 Yamaguchi, Masayuki |
物質化学フロンティア | Polymers| Materials |
生涯(Career)区分 10名 ※研究領域順
氏名、英語表記 | 研究領域 | ランクされたサブ分野 |
ヒュン ナム ヤン教授 Van-Nam, Huynh |
共創インテリジェンス | Artificial Intelligence & Image Processing| Operations Research |
藤﨑 英一郎 教授 Fujisaki, Eiichiro |
コンピューティング科学 | Artificial Intelligence & Image Processing| Networking & Telecommunications |
浅野 文彦 准教授 Asano, Fumihiko |
人間情報学 | Industrial Engineering & Automation| Design Practice & Management |
上田 純平 准教授 Ueda, Jumpei |
物質化学フロンティア | Applied Physics| Nanoscience & Nanotechnology |
栗澤 元一 教授 Kurisawa, Motoichi |
物質化学フロンティア | Biomedical Engineering| Polymers |
長尾 祐樹 教授 Nagao, Yuki |
物質化学フロンティア | Energy| Polymers |
松村 和明 教授 Matsumura, Kazuaki |
物質化学フロンティア | Biomedical Engineering| Polymers |
山口 政之 教授 Yamaguchi, Masayuki |
物質化学フロンティア | Polymers| Materials |
前之園 信也 教授 Maenosono, Shinya |
ナノマテリアル・デバイス | Applied Physics| Chemical Physic |
芳坂 貴弘 教授 Hohsaka, Takahiro |
バイオ機能医工学 | General Chemistry| Organic Chemistry |
【参照サイト】
[Elsevier Data Repository]
August 2025 data-update for "Updated science-wide author databases of standardized citation indicators"
https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/8
Published: 19 September 2025
DOI:10.17632/btchxktzyw.8
2025年度JST戦略的創造研究推進事業(CREST・ACT-X)に採択
国立研究開発法人科学技術振興機構(JST)の「戦略的創造研究推進事業(CREST・ACT-X)」において、本学の研究提案からCREST1件、ACT-X1件が採択されました。
採択者および採択課題は以下のとおりです。
【CREST】
研究代表者:ナノマテリアル・デバイス研究領域 ホ アン ヴァン教授
研究課題名:Cross-X: AI 駆動型の触覚・近接センシングおよび適応的コンポーネントによる、多様な形態に対応した身体知能の実現
研究領域:実環境知能システムを実現する基礎理論と基盤技術の創出
研究概要:
本研究は、全身にわたるマルチモーダルセンシングを、適応的形態、事前学習知識、継続学習と統合し、迅速かつ頑健に応答できる物理知能モジュールを構築することを目的とする。さらに、各モジュールにおける局所的なセンシング・駆動から、ロボット全体における統合的な機能発現へと至る「身体知能」の科学的基盤を確立し、次世代ロボティクスの新しいパラダイムを切り拓くことが期待される。
【ACT-X】
研究代表者:コンピューティング科学研究領域 鎌田 斗南助教
研究課題名:連続と離散を横断する計算基盤の確立と実問題への接続
研究領域:次世代 AI を築く数理・情報科学の革新
研究概要:
近年の計算機科学の発展により、実社会の多様な課題を計算機で扱うことが可能となった。しかし、社会課題の多くは本来的に連続的であり、計算機が扱う離散的な近似との間には根本的な差異がある。そのため、問題の困難性と容易性の境界を理解するためには、連続性を計算機上で扱う新たな枠組みが必要である。本研究では、実社会の問題を実数変数の決定問題としてモデル化し、その計算量解析を通じて、体系的な数理基盤を確立する。
CREST:
CRESTは、我が国が直面する重要な課題の克服に向けて、独創的で国際的に高い水準の目的基礎研究を推進し、社会・経済の変革をもたらす科学技術イノベーションに大きく寄与する、新たな科学知識に基づく創造的で卓越した革新的技術のシーズ(新技術シーズ)を創出することを目的とするネットワーク型(チーム型)研究です。
「実環境知能システムを実現する基礎理論と基盤技術の創出」領域では、実環境・物理空間における多様かつ予測困難な状況変化に対して柔軟かつ安全に対応できる知能システム(Physical AI)の構築に向けた基礎学理と基盤技術の創出を目指します。AI とロボティクスやIoT との連携により AI に身体性を付与するなど、知能、機械、数理、制御、計算、通信、神経科学等の学術分野の融合による高度な知能システム構築に資する研究開発を推進します。
▶ 戦略的創造研究推進事業(CREST)
ACT-X:
ACT-Xは、我が国が直面する重要な課題の克服に向けて、優れた若手研究者を発掘し育成することを目的としたネットワーク型(個人型)研究です。
「次世代AIを築く数理・情報科学の革新」領域では、既存のAI技術の限界・困難を克服するため、AI 技術・情報科学および数学・数理科学、その他様々な研究分野の融合・応用による AI技術の高度化や適用範囲の拡大などの、挑戦的な研究課題に取り組む若手研究者を支援することで、新しい価値の創造につながる研究開発を推進します。
▶ 戦略的創造研究推進事業(ACT-X)
令和7年9月29日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/09/29-2.html文部科学省マテリアル先端リサーチインフラ(ARIM)シンポジウムを本学で開催
9月11日(木)、9月12日(金)の2日間、本学にて、「ナノ物性の可視化と理解:AIと拓くマテリアル解析の新展開」シンポジウムを開催しました。文部科学省マテリアル先端リサーチインフラ(ARIM)事業の一環として開催された本シンポジウムには、オンラインと現地合わせて150名を超える参加者が集まり、活発な議論と情報交換が行われました。
今回のシンポジウムでは、電子顕微鏡(TEM)像や分光データを活用したAIによるマテリアル解析の新たな展開をテーマに、最前線で活躍する研究者が講演を行いました。ARIM事業では、TEM画像や分光データの収集・蓄積を進めており、今後のデータ公開・共用に向けた準備が進んでいます。
【プログラム概要】
1日目(9月11日)
初日は、本学先端科学技術研究科副研究科長・大島義文教授の挨拶に続き、以下の招待講演が行われました。
①武藤俊介 教授(名古屋大学)
TEM応用における計測インフォマティクスのビジョンと課題について講演
②志賀元紀 教授(東北大学)
微細構造計測データに対する機械学習の応用について紹介
③溝口照康 教授(東京大学)
生成AIを活用した計測データからの情報抽出と物質設計について講演
④木本浩司 センター長(物質・材料研究機構(NIMS))
4D-STEMと教師なし機械学習によるナノ領域構造解析について発表
2日目(9月12日)
⑤ダム ヒョウ チ 教授(本学共創インテリジェンス研究領域)
Data-Driven AIによる材料動態の可視化について講演
⑥井原史朗 助教(九州大学)
情報科学を援用したナノスケール幾何学情報の抽出と3次元可視化について紹介
⑦麻生浩平 講師(本学ナノマテリアル・デバイス研究領域)
画像処理を活用した電子顕微鏡画像からのナノ材料情報の抽出について発表
閉会にあたり、本学ナノマテリアル・デバイス研究領域 高村由起子教授(ARIM業務責任者)が総括と今後の展望を述べ、盛況のうちに終了しました。
終了後、参加者からは、「生成AIの知見が研究に活用できそうだと感じた」、「結晶粒界の可視化が非常に興味深かった」、「実験家の視点に近い取り組みが印象的だった」などの感想が寄せられました。
今回のシンポジウムは、TEMデータを活用したデータ駆動型研究の可能性を広く共有する貴重な機会となりました。本学は今後もARIM事業を通じて、マテリアル解析の新展開を支援していきます。

開会の挨拶をする
大島義文教授

①武藤俊介教授
(名古屋大学)

②志賀元紀教授
(東北大学)

③溝口照康教授
(東京大学)

④木本浩司センター長
(NIMS)

⑤ダムヒョウチ教授
(本学)

⑥井原史朗助教
(九州大学)

⑦麻生浩平講師
(本学)

閉会の挨拶をする
高村由起子教授
令和7年9月29日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/09/29-1.html特殊なダイヤモンドの針を開発し超高速で変化する電場の局所計測に成功

![]() ![]() ![]() |
国立大学法人筑波大学 国立大学法人 慶應義塾大学 |
特殊なダイヤモンドの針を開発し
超高速で変化する電場の局所計測に成功
NV中心と呼ばれる格子欠陥を導入したダイヤモンドを原子スケールの空間分解能を持つ原子間力顕微鏡(AFM)の探針(プローブ)に用い、二次元層状物質の表面近傍の電場をフェムト秒(1000兆分の1秒)・ナノメートル(10億分の1メートル)の時空間分解能で計測することに成功しました。
ダイヤモンドの結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがあります。これをNitrogen-Vacancy(NV)中心と言います。そして、NV中心を導入したダイヤモンドに電界を加えると、その屈折率が変化するようになります。これは電気光学(EO)効果と呼ばれる現象で、ダイヤモンド単体では実現していませんでした。 本研究チームはこれまでに、NV中心を導入した高純度ダイヤモンドに1000兆分の1秒という極めて短時間だけパルス光を放出するフェムト秒レーザーを照射し、ダイヤモンドのEO効果を計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています。このことは、ダイヤモンドが超高速応答するEO結晶として利用可能で、電場を検出する探針(ダイヤモンドNVプローブ)となり得ることを示しています。 そこで本研究では、NV中心を導入したダイヤモンドの超高速EO効果と、原子スケールの空間分解能を有する原子間力顕微鏡(AFM)技術とを融合し、フェムト秒(fs=1000兆分の1秒)の時間分解能とナノメートル(nm=10億分の1メートル)の空間分解能で局所的な電場のダイナミックスを測定できる、時空間極限電場センシング技術を開発しました。そして、このセンシング技術を用いることで、二次元の原子層が層状に重なった二次元層状物質であるセレン化タングステン(WSe2)試料の表面近くの電場を500 nm以下かつ100 fs以下の時空間分解能でセンシングできました。 ダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究成果は、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開されることが期待されます。 |
【研究代表者】
筑波大学数理物質系
長谷 宗明 教授
北陸先端科学技術大学院大学ナノマテリアル・デバイス研究領域
安 東秀 准教授
慶應義塾大学理工学部
ポール フォンス 講師(研究当時、同大学同学部電気情報工学科教授)
【研究の背景】
ダイヤモンド中の不純物には窒素やホウ素などさまざまな種類があります。その中でも、点欠陥に電子や正孔が捕捉され、発光を伴う種類のものはダイヤモンドを着色させるため、「色中心:カラーセンター」と呼ばれます。色中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、温度や電場を読み取る量子センサー注1)として用いられています。
量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心注2)と呼ばれる複合欠陥を用いたセンサーは、まだまだ発展途上の技術ですが、高空間分解能・高感度が要求される細胞内計測やデバイス評価装置のセンサーへの応用など、新しい可能性が期待されています。
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ近赤外域の波長で瞬くフェムト秒超短パルスレーザー注3)を用い、NV中心を導入したダイヤモンドの電気光学(EO)効果注4)を実時間分解計測することで、ダイヤモンドの格子振動ダイナミックスを動的に高感度に検出することに成功しています参考文献 a)。このことは、ダイヤモンドが超高速応答するEO結晶になり、電場検出の探針(プローブ)となり得ることを示すものです。
これまでもダイヤモンドを原子間力顕微鏡(AFM)注5)と組み合わせた電場センシングの試みはなされていましたが、局所ダイナミックスを動的に評価できる手法はほとんどありませんでした。特に時間分解能に関しては、発光測定に基づく従来の手法ではナノ秒程度が限界であり、ピコ秒以下の超高速時間分解能に関しては、全く開拓されていませんでした。
【研究内容と成果】
本研究では、量子光学(フェムト秒超短パルスレーザーを用いたダイヤモンドのEO効果)と走査プローブ顕微鏡(SPM)の一種である原子間力顕微鏡(AFM)技術を融合することで、光の回折限界を超える空間分解能に加えて、今までの検出限界を超える超高速時間分解能で局所的な電場計測を実現することを目指しました(図1)。
極めて不純物が少ない高品質のダイヤモンド結晶の表面近傍(深さ40nm)に、密度を制御したNV中心を導入し、そのダイヤモンド結晶をレーザーカットおよび集束イオンビーム(FIB)技術注6)を駆使することで、先端径が500 nm以下のダイヤモンドNVプローブに加工することに成功しました。このダイヤモンドNVプローブを、フェムト秒超短レーザーを組み込むことが可能な、ピエゾ抵抗効果注7)に基づく自己センシング方式注8)のAFMのカンチレバーに取り付けました(図2)。
このシステムを用いて、まずガリウムヒ素(GaAs)半導体基板の表面電場を調べました。フェムト秒超短パルスレーザーの出力光をビームスプリッタで約10対1に分岐し、強い方を励起のためのポンプ光、弱い方を探索のためのプローブ光とします。電子が電流を運ぶn型GaAs試料は高強度のポンプ光で励起され、プローブ光はダイヤモンドNVプローブに入射されます(図3a)。まず、ダイヤモンドNVプローブの有無による時間分解EO信号の検出感度を確認するため、ダイヤモンドNVプローブを用いないマクロ計測により時間分解EO信号を計測したところ、励起直後(Time delay=時間遅延0 ps)に立ち上がり、数ps(ps=1兆分の1秒)以内に緩和しポンプ光を当てる前に戻る信号が得られました(図3b)。またNVセンターを導入したダイヤモンドNVプローブを通じて、n型GaAsの表面電場を検出することに成功しました(図3c)。ダイヤモンドNVプローブの導入によりEO信号の大きさは約1/42に減少しましたが、局所計測に成功したと言えます。
さらに二次元層状物質注9)であるセレン化タングステン(WSe2)単結晶をシリコン基板上に転写した試料を用いて実験を行いました。このWSe2試料では、場所によって結晶の厚さが異なっていますが、光学顕微鏡で銀白色のバルク(Bulk)結晶(厚さが10原子層以上の結晶)を見つけ、このバルク結晶と接する紫色の単層(1 ML)部分との界面に着目しました(図4a)。この厚さの異なる界面を用いて、局所的な表面電場の計測を行ったところ、単層部分とバルク部分のキャリア特性を反映した表面電場信号を、500 nm以下かつ100 fs以下の時空間分解能でセンシングすることに成功しました(図4a,b)。また時間分解EO信号の減衰を指数関数を用いてフィッティング(モデル化)したところ、単層部分では約200フェムト秒で緩和する成分のみが観測されました。一方、バルク部分では、この成分に加えて、約2psで緩和する遅い成分の寄与があることが分かりました(図4c)。このことは、単層部分では電場は基板との相互作用などで高速に緩和するのみなのに対し、バルク部分では、表面電場と結合したキャリアのバンド内緩和やバレー間緩和注10)が寄与していることを示しています。n型GaAsの時間分解EO信号による電場検出感度を見積もると、約100 V/cm/(Hzは周波数)となりました。これは発光測定に基づく従来の手法で得られたマイクロ秒時間領域でのDC(直流)電場センシングと同等の検出感度を達成したことになります。最近のマイクロ秒時間領域でのAC(交流)電場センシングに関する検出感度には2桁及びませんが、本手法ではDC(直流)電場センシングと同等の検出感度で500 nm以下かつ、100フェムト秒というマイクロ秒を遙かに凌ぐ高い時空間分解能が得られることが示されたと言えます。
【今後の展開】
今回開拓した時空間極限センシング技術は、例えば炭化ケイ素(SiC)などのパワー半導体材料や燃料電池材料内での局所電場検知、トポロジカル絶縁体における局所電場検知など、基礎物理・化学のための基盤技術となることが期待されます。また、NV中心を含むダイヤモンドNVプローブはスピンや温度の変化にも感度があるため、本研究のアプローチは、電場の検出に加え、磁場や温度を検出するためのセンシング技術としても展開可能であると言えます。例えばレーザー医療や分子レベルでの細胞の計測や制御を通じて、癌の治療をはじめとする量子生命科学の分野にも波及しうる革新的な展開が期待されます。
【参考図】
図1 本研究で行なった実験の概要図 ダイヤモンドNVプローブを用いた超高速ポンプ・プローブ電場センシング測定の概略図。試料上の各指定点においてAFMプローブを垂直に接近・後退させる「ピンポイントモード」で測定を行った。また試料はピエゾスキャナーを用いてx-y方向に走査される。 |
図2 本研究で作製したダイヤモンドNVプローブ概要図 (a) FIBで作製したダイヤモンドNVプローブ(探針)の走査型イオン顕微鏡像。マイクロメートルサイズに加工されたダイヤモンド結晶の一部が探針となっている。(b) ダイヤモンドNVプローブの探針部分のフォトルミネッセンス画像。赤色の部分から探針の直径が500 nm以下であることが分かる。(c)カンチレバーに取り付けたダイヤモンドNVプローブの光学顕微鏡像。カンチレバーは自己センシング方式用の回路部分の上部に位置しており、その先端に探針部分を含むダイヤモンドNVプローブが取り付けられている。 |
図3 ダイヤモンドNVプローブを用いたn型GaAs表面の電場センシング (a)ダイヤモンドNVプローブ先端近傍の表面バンド曲げと接触モードの配置図。表面状態はフェルミエネルギー(EF)を示すベル形状の破線で表され、下側のバンドは電子(-)で占有されている。VBは価電子帯、CBは伝導帯を示す。(b)ダイヤモンドNVプローブを用いないマクロ計測によるn型GaAsウェハーからの時間分解電気光学信号。(c)ダイヤモンドNVプローブを用いたn型GaAsからの局所的時間分解電気光学信号。(b)のマクロ計測の場合に比べてEO信号の大きさは約1/42になっているが、検出感度が十分であることが確認された。 |
図4 WSe2のEO信号の時空間測定 (a) ダイヤモンドNVプローブを用いた60 µm ×60 µm領域のトポグラフ画像。色の薄い部分がバルク(Bulk)結晶である。左上の挿入図は光学顕微鏡像であり、銀白色の部分はバルク(Bulk)結晶である。 局所計測では、単層(1ML)領域(P4)からバルク(Bulk)領域(P11)までを500 nmステップで計測する。(b)ダイヤモンドNVプローブを用いて得られた局所的な時間分解電気光学信号。P4からP11に行くに従い、単層(1ML)からバルク(Bulk)領域を測定している。図(b)の黒実線は、単一指数関数(単層=1ML領域のデータについて)または二重指数関数(バルク領域のデータについて)を用いたフィッティング(モデル化)を示す。(c) P4からP11の異なる位置における500 nmステップで得られた時間分解電気光学信号へのフィッティングにより得られた緩和時間定数。エラーバーは標準偏差を示す。 |
【用語解説】
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測する手法のこと。
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、すぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」はダイヤモンドの着色にも寄与する色中心と呼ばれる格子欠陥となる。NV中心には周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
パルスレーザーの中でも特にパルス幅(時間幅)がフェムト秒(1000兆分の1秒)以下の極めて短いレーザーのこと。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
物質に電場を加えると、電場の強度に応じて物質の屈折率が変化する効果のこと。
先端が鋭い探針で試料の表面を走査し、探針と表面との間に働く微少な力を測定して表面構造を原子スケールの高分解能で観察することができる顕微鏡のこと。AFM探針は、バネのようにしなるカンチレバーの先端に取り付けられており、コンタクトモードでは、この探針と試料表面を微小な力で接触させ、カンチレバーのたわみ量が一定になるように探針・試料間距離をフィードバック制御しながらX―Y方向(水平方向)に走査することで、表面形状を画像化できる。
イオンビーム(荷電しているイオンを高電界で加速したもの)を細く絞ったものである。物質の微細加工、蒸着、観察などの用途に用いられる。
半導体材料などに機械的なひずみ(力による変形)を与えたとき、材料の電気抵抗が変化する効果のこと。
通常のAFMでは、レーザー光をカンチレバー背面に照射し、反射したレーザービームの位置変化を位置センサーで計測することで、カンチレバーのたわみ量(表面構造によりたわんだ量)を読み取る。カンチレバーのたわみ信号を光で読み取ることから、これを光てこ方式と呼ぶ。一方、自己センシング方式のAFMでは、光てこ方式のようにレーザーと一センサーを必要とせず、ピエゾ抵抗効果などのカンチレバー自身の物理量の変化からカンチレバーのたわみ量を読み取ることができる。
共有結合が二次元方向だけに伸びている結晶のこと。原子一層レベルの二次元原子層が、ファンデルワールス力で積層して三次元結晶を形成している。炭素の二次元原子層であるグラフェンが積層したグラファイト、近年盛んに研究されるようになった遷移金属カルコゲナイドなどがある。本研究で調べたセレン化タングステン(WSe2)も遷移金属カルコゲナイドである。
半導体などにおいて、バレーとは電子バンドの極小点を指す。異なるバレー間にキャリアが散乱(遷移)することでエネルギーを失う緩和過程をバレー間緩和と呼ぶ。
【研究資金】
本研究は、科研費による研究プロジェクト(25H00849, 22J11423, 22KJ0409, 23K22422, 24K01286, 24H00416, 23H00264)、および国立研究開発法人 科学技術振興機構 戦略的創造研究推進事業CREST「ダイヤモンドを用いた時空間極限量子センシング」(研究代表者:長谷 宗明)(JPMJCR1875)の一環として実施されました。
【参考文献】
a) T. Ichikawa, J. Guo, P. Fons, D. Prananto, T. An, and M. Hase, 2024, Cooperative dynamic polaronic picture of diamond color centers. Nature Communications. 15, 7174 (10.1038/s41467-024-51366-x).
【掲載論文】
題名 | An ultrafast diamond nonlinear photonic sensor. (超高速ダイヤモンド非線形光センサー) |
著者名 | D. Sato, J. Guo, T. Ichikawa, D. Prananto, T. An, P. Fons, S. Yoshida, H. Shigekawa, and M. Hase |
掲載誌 | Nature Communications |
掲載日 | 2025年9月25日 |
DOI | 10.1038/s41467-025-63936-8 |
令和7年9月26日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/09/26-1.htmlがん光免疫療法のための多機能性液体金属ナノ複合体の開発に成功! ~乳酸菌と液体金属の革新的融合により、がんの可視化・診断・治療の一体化を実現~

がん光免疫療法のための多機能性液体金属ナノ複合体の開発に成功!
~乳酸菌と液体金属の革新的融合により、がんの可視化・診断・治療の一体化を実現~
【ポイント】
- 乳酸菌成分と液体金属からなる革新的ナノ複合体の作製に世界で初めて成功
- マウス移植がんの可視化と治療効果を実証
- 免疫賦活化(活性化)と光熱変換の相乗効果により、近赤外光照射でがんを完全消失
- 優れた生体適合性を確認、新たながん診断・治療技術創出への期待
北陸先端科学技術大学院大学 物質化学フロンティア研究領域の都 英次郎教授らの研究チームは、液体金属*1表面に乳酸菌*2成分と近赤外蛍光色素(インドシアニングリーン*3)を被覆した多機能性ナノ複合体の開発に成功しました。 開発したナノ複合体は、EPR効果*4により、がん細胞を標的とする能力に優れており、大腸がんを移植したマウスの腫瘍内に効果的に集積することを確認しました。さらに、生体透過性の高い近赤外レーザー光*5照射により、以下の治療効果を実現しました。
実際に、近赤外光を2日に1回5分間、計2回照射することで、マウスの移植がんを5日後に完全消失させることに成功しました。また、包括的な生体適合性試験により、本ナノ複合体の高い安全性も確認されています。
本研究成果は、診断と治療を統合した革新的ながん光免疫治療技術の創出につながる可能性が期待されます。 |
【研究背景と内容】
液体金属ナノ粒子への着目
ガリウム・インジウム(Ga/In)合金からなる室温液体金属は、優れた生体適合性と物理化学的特性を有し、バイオメディカル応用において世界的に注目されています。都教授らは、「免疫賦活化物質を液体金属と組み合わせ、がん患部に選択的送達できれば、強力な抗腫瘍効果と近赤外光を用いた診断・治療の統合が実現できる」との着想から研究を開始しました(図1)。
図1. 多機能性液体金属ナノ複合体を活用したがん光免疫療法の概念図
腫瘍内細菌叢の活用
近年の研究により、腫瘍組織内には固有の細菌叢(さいきんそう:細菌の集まり)が存在することが明らかになっています。都教授らは、これまでに腫瘍内から多種の細菌の単離に成功し、これらを活用したがん治療技術開発を進めてきました(既報プレスリリース:「阿吽の呼吸で癌を倒す!(※1)」「2種の細菌による新たながん治療へのアプローチ『AUN(阿吽)』を開発(※2)」)。
(※1)https://www.jaist.ac.jp/whatsnew/press/2023/05/08-1.html
(※2)https://www.jaist.ac.jp/whatsnew/press/2025/08/06-1.html
革新的ナノ複合体の創製
本研究チームは、Ga/In液体金属、乳酸菌成分、インドシアニングリーンを混合し、超音波照射するだけで球状ナノ粒子を形成する簡便な製法を確立しました。この手法により作製されたナノ複合体は以下の特性を示しました。
・高い安定性:7日以上の粒径安定性を維持
・優れた細胞親和性:高い膜浸透性と無毒性
・効率的光熱変換:近赤外光照射による発熱機能
卓越した治療効果の実証
大腸がん移植マウスを用いた評価実験では、ナノ複合体の尾静脈投与24時間後、740~790 nmの近赤外光照射により、がん患部のみが鮮明に蛍光発光し、EPR効果による選択的腫瘍集積が確認されました(図2A)。
続いて808 nmの近赤外光を患部に照射(2日間隔で各5分間、計2回)したところ、免疫賦活化と光熱変換の相乗効果により、5日後にがんの完全消失を達成しました(図2B)。
図2. (A) 液体金属ナノ粒子の標的腫瘍内における蛍光特性 (B) 液体金属ナノ粒子による抗腫瘍効果(腫瘍は完全消失) |
対照実験の結果
乳酸菌単独投与:免疫賦活化によりある程度の抗腫瘍効果を確認
免疫非活性化ナノ粒子(ポリエチレングリコール-リン脂質複合体*6被覆):レーザー照射後も顕著な抗腫瘍効果なし
これらの結果から、乳酸菌成分による免疫賦活化と液体金属の光熱変換の相乗効果が、強力な抗腫瘍作用をもたらすことを明確に示しています。
優れた安全性の確認
細胞毒性試験:マウス大腸がん細胞(Colon26)およびヒト正常線維芽細胞(TIG103)において、ナノ複合体投与24時間後もミトコンドリア活性を指標とした細胞生存率に低下はなく、細胞毒性がないことを確認しました。
生体適合性試験:マウス静脈内投与後の血液検査(1週間)および体重測定(約1ヵ月)において、生体への悪影響は極めて軽微であることが判明しました。
【研究の意義と今後の展望】
本研究成果は、開発したナノ複合体が次世代がん診断・免疫療法の基盤技術となり得ることを実証するものです。さらに、ナノテクノロジー、光学、免疫学の学際的融合による材料設計の新たな技術基盤として、幅広い研究領域への貢献が期待されます。
今後は、他のがん種への適用拡大や臨床応用に向けた更なる安全性・有効性検証を進め、患者さんにより優しく効果的ながん治療法の実現を目指します。
【掲載誌情報】
本成果は、材料科学系トップジャーナル「Advanced Composites and Hybrid Materials」誌(Springer Nature社発行)に9月19日(現地時間)に掲載されました。
【研究支援】
本研究は、文部科学省科研費 基盤研究(A)(23H00551)、同 挑戦的研究(開拓)(22K18440、25K21827)、国立研究開発法人 科学技術振興機構(JST)大学発新産業創出基金事業 スタートアップ・エコシステム共創プログラム(JPMJSF2318)、本学超越バイオメディカルDX研究拠点ならびに本学生体機能・感覚研究センターの支援のもと行われたものです。
【論文情報】
掲載誌 | Advanced Composites and Hybrid Materials |
論文題目 | Bacterial-adjuvant liquid metal nanocomposites for synergistic photothermal immunotherapy |
著者 | Nina Sang, Seigo Iwata, Yun Qi, Eijiro Miyako* |
掲載日 | 2025年9月19日にオンライン版に掲載 |
DOI | /10.1007/s42114-025-01434-7 |
【用語説明】
室温以下あるいは室温付近で液体状態を示す金属のこと。例えば、水銀(融点マイナス約39℃)、ガリウム(融点約30℃)、ガリウム-インジウム合金(融点約15℃)がある。
糖から乳酸を生成する性質を有する細菌の総称。本研究で用いた乳酸菌は都研究室にて腫瘍内から単離したものである。
肝機能検査に用いられる緑色色素のこと。近赤外レーザー光を照射すると近赤外蛍光と熱を発することができる。
100nm以下のサイズに粒径が制御された微粒子は、正常組織へは漏れ出さず、腫瘍血管からのみ、がん組織に到達して患部に集積させることが可能である。これをEPR効果(Enhanced Permeation and Retention Effect)という。
レーザーとは、光を増幅して放射するレーザー装置、またはその光のことである。レーザー光は指向性や収束性に優れており、発生する光の波長を一定に保つことができる。とくに700~1100 nmの近赤外領域の波長の光は生体透過性が高いことが知られている。
ポリエチレングリコールとリンを含有する脂質(脂肪)が結合した化学物質。脂溶性の薬剤を可溶化させる効果があり、ドラッグデリバリーシステムに良く利用される化合物の一つ。
令和7年9月25日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/09/25-1.html物質化学フロンティア研究領域の都教授らの総説論文がCell Biomaterialsに掲載
物質化学フロンティア研究領域の都 英次郎教授らの総説論文「生きた医薬(リビングドラッグ):治療応用における素晴らしい進化(Living Drugs: A Wonderful Evolution for Therapeutic Applications)」が、国際学術誌 Cell Biomaterials(Nature姉妹誌と同等レベルに格付けされているCell Pressの新興フラッグシップジャーナル)に掲載されました。
なお、本研究は、文部科学省 科学研究費補助金 基盤研究A(23H00551)、同 挑戦的研究(開拓)(22K18440、25K21827)、国立研究開発法人 科学技術振興機構(JST)研究成果最適展開支援プログラム(A-STEP)(JPMJTR22U1)、同 大学発新産業創出基金事業 スタートアップ・エコシステム共創プログラム(JPMJSF2318)、同 次世代研究者挑戦的研究プログラム(SPRING)未来創造イノベーション研究者支援プログラム(JPMJSP2102)、本学超越バイオメディカルDX研究拠点ならびに生体機能・感覚研究センターの支援のもと行われたものです。
掲載誌 :Cell Biomaterials
論文題目:Living Drugs: A Wonderful Evolution for Therapeutic Applications
著者 :Soudamini Chintalapati, Nina Sang, Mikako Miyahara, Seigo Iwata, Kei Nishida, Eijiro Miyako*
掲載日 :2025年9月8日にオンライン版に掲載
DOI :https://doi.org/10.1016/j.celbio.2025.100193
■論文概要
本総説では、細菌・ウイルス・ファージなどの「生きた医薬(Living Drugs)」が持つ治療応用の最前線と将来展望について包括的に解説しています。特に、がんや多剤耐性菌感染症において、これらの生物を利用した革新的治療法が急速に進展しており、免疫応答の回避、標的精度の向上、複合療法モデルの構築など、多様な技術的ブレークスルーが紹介されています。さらに、臨床応用に向けた課題として、投与方法や安全性評価、規制面での対応などが議論され、治療カテゴリーごとの将来方向性や研究優先課題についても提案しています。
本総説では、都研究室が開発を進めている2種の細菌による新たながん治療へのアプローチ「AUN(阿吽)」(プレスリリース参照)を用いた新規がん療法についても取り上げています。AUNは低酸素性腫瘍微小環境に選択的に集積・増殖し、免疫依存性と免疫非依存性の両経路を介して腫瘍を攻撃する自然由来の細菌療法です。特に、免疫不全状態でも効果を発揮し、腫瘍内血管の選択的破壊や細菌変形などによる直接的な腫瘍壊死誘導が確認されています。遺伝子改変を必要とせず高い安全性を維持できることから、臨床応用への展望が広がっています。
本総説は、Living Drugs研究の現状と課題、そして都研究室発のAUN療法を含む次世代治療の可能性を示す重要な指針となるものです。
プレスリリース詳細:2種の細菌による新たながん治療へのアプローチ「AUN(阿吽)」を開発 ―免疫不全状態でも機能が期待されるがん治療に向けて―
令和7年9月9日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/09/09-1.html学生のNGUYEN, Kim Loc Thiさんらの論文が、Advanced Science (WILEY) 誌の表紙に採択
学生のNGUYEN, Kim Locさん(博士後期課程3年、サスティナブルイノベーション研究領域、桶葭研究室)らの「パターン形成:分割現象における「対称性の破れ」を実証」に係る論文が、Advanced Science (WILEY) 誌の表紙に採択されました。
■掲載誌
Advanced Science, volume 12, issue 32 (2025)
掲載日:2025年9月1日
■著者
Thi Kim Loc Nguyen, Taisuke Hatta, Koji Ogura, Yoshiya Tonomura, Kosuke Okeyoshi*
■論文タイトル
Symmetry breaking in meniscus splitting: Effects of boundary conditions and polymeric membrane growth
■論文概要
自然界には様々な幾何学パターンがあり、例えば雪の結晶の形は、気温と水蒸気の量で多様に変化します。また、乾燥環境は水の蒸発を引き起こし、生物であればその成長過程で非対称なパターンをつくります。これまで、この幾何学性や非対称性について、数理的な解釈がなされてきたものの、物理化学的実験に基づいた再現はなされてきませんでした。本研究は、界面分割現象のパターン形成において、対称性が破れることを実証しました。この分割現象は「ワインの涙」として知られる粘性フィンガリング現象を展開したものです。有限空間からポリマー水分散液が乾燥する際、空間中心からずれた位置にポリマーを析出して乾燥界面を分割します。これは、界面科学や高分子科学だけでなく、生体組織など自然界に見られる非対称なパターン形成の理解に重要です。
表紙詳細:https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.71215
論文詳細:https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202503807
プレスリリース:https://www.jaist.ac.jp/whatsnew/press/2025/06/04-1.html
令和7年9月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/09/08-1.html学生の井上さんがANTEC® 2025においてBest of ANTEC® 2025に選出
学生の井上貴博さん(博士後期課程3年、物質化学フロンティア研究領域、山口政之研究室)がAnnual Technical Conference(ANTEC® 2025)においてBest of ANTEC® 2025に選出されました。
ANTEC® 2025は、米国プラスチック技術者協会(SPE:Society of Plastics Engineers) が主催し、令和7年3月3日~6日にかけて、米国フィラデルフィアにて開催された国際会議です。
ANTEC® 2025では、プラスチックおよび高分子科学に関する産業界、研究機関、学術機関、そして国際的な研究における最先端の成果が紹介され、新たなプラスチック技術、プロセス、高分子研究、新素材など幅広いテーマが取り上げられる中、今年は特に科学的・技術的・産業的な課題とその解決策に焦点が当てられました。
SPEは、ANTEC® 2025において、特に影響力の大きかった発表を厳選し、「Best of ANTEC® 2025」としてオンデマンドで限定配信しています。このコレクションは、令和7年12月31日までいつでも視聴が可能です。
また、「Best of ANTEC®」に選出された発表者には、"Outstanding Presentation"(優秀発表)の認定証が授与されます。
※参考:ANTEC® 2025
■受賞年月日
令和7年7月15日
■研究題目、論文タイトル等
Enhancement of Polypropylene Crystallization by Addition of Novel Nucleating Agent
■研究者、著者
井上貴博、山口政之
■受賞対象となった研究の内容
新しく開発されたポリプロピレン用結晶核剤の性能を調べ、結晶化温度など核剤性能を評価する指標が既存の材料よりも優れていることを明らかにした。
■受賞にあたって一言
この度は、ANTEC® 2025におきまして、Best of ANTEC®という賞を頂けたことを大変光栄に思います。本研究を遂行するにあたり、日頃よりご指導ご鞭撻いただいている山口政之教授に心より御礼申し上げます。引き続き、研究活動に努めてまいりたいと思います。
令和7年9月1日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/09/09-1.htmlサイエンスヒルズこまつで子ども向け科学教室 「JAISTサイエンス&テクノロジー教室」を開催

8月23日(土)、サイエンスヒルズこまつにおいて、「JAISTサイエンス&テクノロジー教室」を開催しました。同教室は、小松市との包括連携協定に基づく青少年の理科離れ解消に向けた取組のひとつであり、サイエンスヒルズこまつが小松駅前に開館して以来、毎年実施しているものです。
今年度の第1回目「スーパーボールの弾み方を変えてみよう<不思議な変形・流れを示す材料の観察>」には、6組の小学生と保護者が参加しました。先端科学技術研究科(物質化学フロンティア研究領域)の山口政之教授の説明を聞きながら、温度や材質によるスーパーボールの弾み方の違いを体験しました。その後、形状記憶プラスチック等が配られ、子どもたちは温度によって異なる応答を示す物質の不思議な様子に夢中になっていました。




令和7年8月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/08/26-2.html能美市の中学生の皆さんが来学
8月21日(木)、能美市の中学2年生20名の皆さんが施設見学のため来学しました。
中学生の皆さんは、本学と学術協力の基本協定を締結している沖縄科学技術大学院大学(OIST)を9月に訪問する予定で、その前に地元にある本学(JAIST)を知るため、見学に来られました。
はじめに学長から挨拶があり、附属図書館の『解体新書』(杉田玄白著)や情報社会基盤研究センターの超並列計算機システム「KAGAYAKI」、ナノマテリアルテクノロジーセンターを見学しました。その後、サスティナブルイノベーション研究領域の小矢野 幹夫教授による研究紹介があり、熱電ミニカーの走行体験をしました。中学生の皆さんにとっては、本学の研究環境に触れるよい機会となったようです。

学長挨拶

附属図書室の見学

大規模並列計算機
KAGAYAKIの見学

ナノマテリアルテクノロジー
センターの見学

小矢野研究室による
熱電ミニカーの走行体験
令和7年8月26日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/08/26-1.html人と安全に協働できる"ソフトロボットリンク"を開発 触れてわかる、近づいて感じる-近接覚と触覚のハイブリッドセンシング技術「ProTac」

人と安全に協働できる"ソフトロボットリンク"を開発
触れてわかる、近づいて感じる-近接覚と触覚のハイブリッドセンシング技術「ProTac」
【ポイント】
- 透明・不透明を切り替えられるソフトスキンと視覚センサーを用い、近接センシングとスキン変形の解析による触覚センシングを備えたマルチモーダルソフトセンシング技術「ProTac」を開発
- 市販ロボットアームにも取り付け可能
- 従来の剛体リンクでは困難とされる、接触の多い環境下での動作制御が可能
- 農業や介護など、人とロボットが協働する作業への応用に期待
- AI駆動型センシングフュージョン技術
北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域のクアン・ハン・ルウ研究員、ホ・アン・ヴァン教授らの研究チームは、透明・不透明を電圧により切り替えられるソフト素材と視覚センシング技術を融合し、近接・触覚の両モードを切り替えて検知できるマルチモーダルソフトセンシング技術「ProTac」を世界で初めて開発しました。ProTacを用いたソフトロボットリンクは、周囲の物体を検知する近接センシングとマーカー画像の変化から触覚情報を読み取る触覚センシングを一台で切り替えて行うことができ、人との接触が多い環境で安全に動作制御が可能です。なお、本研究成果は、2025年7月28日にIEEE Transactions on Robotics(T-RO)に掲載されました。 |
【研究概要】
近年、人と同じ空間で安全かつ柔軟に作業できるロボットのニーズが高まっています。これに応えるため、私たちの研究チームは、ソフト機能材料と画像や映像から情報を取得・解析する技術である視覚センシング技術を融合した新しいマルチモーダルソフトセンシング技術「ProTac」(図1)を開発しました。
ProTacは、電圧をかけることで透明・不透明を切り替えられるポリマーディスパースド液晶(PDLC)フィルム注1)と内蔵カメラを組み合わせています。透明時には視界を活用して周囲の物体の近接を検知し、不透明時にはマーカー画像の変化から触覚情報の取得を実現します。また、最新の深層学習ベースの視覚アルゴリズムを用いることで、安定したリアルタイムセンシングが可能です。
図1:ProTacのイメージ図
この技術を用いたソフトロボットリンクは、市販のロボットアームやカスタム製作されたソフトロボットにも取り付け可能で、障害物検知に基づく速度調整や接触時の反射動作など、多様な制御戦略を実現します。ProTacを備えたソフト多機能センシングアームは、人とロボットが密に連携する場面や、従来の剛体リンクでは困難な動作制御において高い性能を示しました。
今後は、この技術を手足や胴体などロボットの各部位に応用し、高機能なマルチモーダルスキンを備えたヒューマノイドロボットの実現が期待されます。また、農業、家庭サービス、介護分野など、幅広い分野での応用も見込まれます。
【研究資金】
本研究は、日本学術振興会 科学研究費補助金 特別研究員奨励費(24KJ1203)、国立研究開発法人 科学技術振興機構(JST)さきがけ(JPMJPR2038)による財政的支援を受けて実施されました。
【論文情報】
掲載誌 | IEEE Transactions on Robotics |
論文タイトル | Vision-based Proximity and Tactile Sensing for Robot Arms: Design, Perception, and Control |
著者 | Quan Khanh Luu, Dinh Quang Nguyen, Nhan Huu Nguyen, Nam Phuong Dam, Van Anh Ho |
掲載日 | 2025年7月28日 |
DOI | 10.1109/TRO.2025.3593087 |
【用語説明】
電圧により透明・不透明を切り替えられる液晶材料。柔軟であり、ディスプレイやスマートウィンドウなどの光の透過を制御する用途に使用される。
令和7年8月22日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/08/22-1.html本学教員がEurekAlert! Feature Storyに掲載されました
AAAS(アメリカ科学振興協会)が運営する世界最大規模のオンラインニュースサービス「EurekAlert!」ウェブサイト内の「Feature Story」に、上原教授、岡田教授、栗澤教授および谷池教授が紹介されました。この「Feature Story」は、世界中の大学や研究機関の研究成果について、研究の背景や意義、研究者の視点や社会への影響などを深堀して、わかりやすくまとめた内容となっています。
それぞれの記事は、以下からご覧ください。
- 上原隆平教授(コンピューティング科学研究領域)
"Unfolding patterns: The computer science behind origami, puzzles, and games"
折り紙・パズル・ゲームに潜む計算複雑性を理論コンピューターサイエンスの視点から解析。最適な折り手順を導くアルゴリズムの開発が、太陽電池の設計やドラッグベクター(薬物輸送体)などへの応用にも期待されています。
https://www.eurekalert.org/news-releases/1093788
- 岡田将吾教授(人間情報学研究領域)
"Bridging the emotional gap in human-AI communication"
視線・身振り・声の抑揚などのマルチモーダル情報から感情を認識し、より人間に寄り添うAIの実現を目指すアフェクティブ・コンピューティング(※)研究。教育や精神医療への応用にも期待が広がります。
※Affective Computing:人間の感情や情動を計算論的に理解・指定・活用する学際的研究領域
https://www.eurekalert.org/news-releases/1093782
- 栗澤元一教授(物質化学フロンティア研究領域)
"Toward multitasking drug carriers that do more than just deliver"
緑茶成分「EGCG」を活用し、ドラッグキャリアそのものに治療効果を持たせたナノ粒子を開発。高い薬物搭載率と長寿命を両立し、がんや白血病の治療効果向上に貢献する革新的DDS(Drug Delivery System:薬物送達システム)が注目されています。
https://www.eurekalert.org/news-releases/1093781
- 谷池俊明教授(物質化学フロンティア研究領域)
"Accelerating materials design with high-throughput experiments and data science"
機械学習とハイスループット実験(※)を組み合わせ、材料探索を飛躍的に加速。未知の反応や触媒の発見が可能となり、資源循環・化学プロセスの革新、持続可能な社会づくりに貢献する研究基盤を構築しています。
※ハイスループット実験:多数のサンプルや条件を同時に、または短時間で処理する実験手法
https://www.eurekalert.org/news-releases/1093790
令和7年8月19日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/08/19-1.html都教授らの研究成果に関する記者発表を文部科学省で実施

8月4日(月)、物質化学フロンティア研究領域の都 英次郎教授は、「2種の細菌による新たながん治療へのアプローチ『AUN(阿吽)』を開発 ―免疫不全状態でも機能が期待されるがん治療に向けて」の研究成果について、文部科学省記者会見室にて記者発表を行いました。
本研究では、T細胞やB細胞などの免疫細胞の力に頼らずがんを制御する新しい治療へのアプローチ「AUN(阿吽)」を開発しました。このアプローチは、免疫不全状態にあるがん患者への新たな選択肢となる可能性があり、今後のさらなる研究と検証が期待されます。
記者発表では、都教授から研究・技術の背景や内容、今後の計画について説明がなされ、その後、記者との活発な質疑応答が行われました。
参加した記者からは、2種の細菌「AUN(阿吽)」によるがん治療のメカニズムや具体的な適用癌種、投与方法、副作用の管理、さらにはスタートアップ事業化に向けた今後の展望など、多岐にわたる質問が寄せられ、本研究への期待と関心の高さがうかがえました。
なお、本研究に関する論評がAdvanced Science誌に掲載されているほか、研究の背景やエピソードなどを紹介した記事がSpringer Nature Research Communities の「Behind the Paper」にて公開されています。ぜひご一読ください。
プレスリリース:2種の細菌による新たながん治療へのアプローチ「AUN(阿吽)」を開発 ―免疫不全状態でも機能が期待されるがん治療に向けて―
記者発表の様子
令和7年8月7日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/08/07-3.html