研究活動の検索
研究概要(研究室ガイド)やプレスリリース・受賞・イベント情報など、マテリアルサイエンスの研究室により公開された情報の中から、興味のある情報をタグや検索機能を使って探すことができます。令和7年度TeSH GAPファンドプログラム『ステップ1』に本学から5名が採択されました
令和7年度TeSH GAPファンドプログラム『ステップ1』の採択者が決定し、本学からは以下5件の研究開発課題が採択されました。
| テック分野 | |
| 人間情報学研究領域 鵜木 祐史 教授 |
音声なりすまし対策のための深層情報ハイディング法/検出法の開発 |
| 物質化学フロンティア研究領域 西村 俊 准教授 |
小規模で効率的な反応評価システムが担う触媒インフォマティクスの事業展開 |
| 物質化学フロンティア研究領域 上田 純平 准教授 |
傷も付かない半永久高輝度透明蓄光セラで究極の低環境負荷光材料を実現! |
| 環境分野 | |
| バイオ機能医工学研究領域 廣瀬 大亮 講師 |
酸化物薄膜トランジスタ型センサとAIの融合技術による"誰でもできる"食品のかんたんスマート品質チェックシステムの提供 |
| 加藤 裕介 博士後期課程学生 | 革新的凍結保存技術による豚精液の凍結保存事業 |
(参考)TeSH HP>R7年度 TeSH GAPファンドプログラム『ステップ1』採択者
TeSHは、2024年2月にJSTの"大学発新産業創出基金事業(2023-2027)スタートアップ・エコシステム共創プログラム"の"地域プラットフォーム"の一つに選ばれました。TeSHが支援するGAPファンドは、基礎研究の成果をビジネスとしての可能性を評価できる段階まで引き上げる「ステップ1」と、概念実証からスタートアップ組成までを支援する「ステップ2」からなります。
令和7年5月27日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/05/27-1.html物質化学フロンティア研究領域の都教授らの論文がSmall Science誌の表紙に採択
物質化学フロンティア研究領域の都 英次郎教授らの「磁石と光で機能制御可能なナノ粒子の開発に成功!-高性能がん診断・治療に向けて-」に係る論文が、生物・化学系のトップジャーナルSmall Science誌の表紙に採択されました。本研究は、文部科学省科研費 基盤研究(A)(23H00551)、文部科学省科研費 挑戦的研究(開拓)(22K18440)、国立研究開発法人科学技術振興機構(JST) 研究成果最適展開支援プログラム (A-STEP)(JPMJTR22U1)、大学発新産業創出基金事業スタートアップ・エコシステム共創プログラム(JPMJSF2318)ならびに本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターの支援のもと行われたものです。
■掲載誌
Small Science, Volume 5, No. 5
掲載日:2025年5月4日
■著者
Yun Qi, Eijiro Miyako*
■論文タイトル
Multifunctional Magnetic Ionic Liquid-Carbon Nanohorn Complexes for Targeted Cancer Theranostics
■論文概要
本研究では、カーボンナノホーン表面に磁性イオン液体、近赤外蛍光色素(インドシアニングリーン)、分散剤(ポリエチレングリコール-リン脂質複合体)を被覆したナノ粒子の作製に成功しました。得られたナノ粒子は、ナノ粒子特有のEPR効果のみならず、磁性イオン液体に由来する磁場駆動の腫瘍標的能によって、大腸がんを移植したマウス体内の腫瘍内に効果的に集積し、磁性イオン液体に由来する抗がん作用に加え、生体透過性の高い近赤外レーザー光により、インドシアニングリーンに由来するがん患部の可視化とカーボンナノホーンに由来する光熱変換による多次元的な治療が可能であることを実証しました。さらに、マウスを用いた生体適合性試験などを行い、いずれの検査からもナノ粒子が生体に与える影響は極めて少ないことがわかりました。当該ナノ粒子と近赤外レーザー光を組み合わせた新たながん診断・治療技術の創出が期待されます。
表紙詳細:https://onlinelibrary.wiley.com/doi/10.1002/smsc.202570019
論文詳細:https://onlinelibrary.wiley.com/doi/full/10.1002/smsc.202400640
プレスリリース詳細:https://www.jaist.ac.jp/whatsnew/press/2025/03/06-1.html
令和7年5月8日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/05/08-2.html学生の松本さんと石須さんがSI2024において優秀講演賞を受賞
学生の松本創大さん(令和7年3月博士前期課程修了、ナノマテリアル・デバイス研究領域、HO研究室)と石須滉大さん(令和7年3月博士前期課程修了、ナノマテリアル・デバイス研究領域、HO研究室)が、第25回計測自動制御学会システムインテグレーション部門講演会(SI2024)において、優秀講演賞を受賞しました。
SI2024は、「サステナブルな社会を目指すシステムインテグレーション」をテーマに、SI部門設立25周年の記念大会として、令和6年12月18日~20日にかけて、岩手県のアイーナいわて県民情報交流センターにて開催されました。
優秀講演賞は、SI部門講演会において発表された全ての発表を対象として審査が行われ、講演会実行委員会によって選出されるものです。
※参考:SI2024
■受賞年月日
令和7年2月17日
【松本創大さん】
■研究題目、論文タイトル等
口径変化が可能な吸着型ソフトロボットハンド
■研究者、著者
松本創大、HO, Anh Van
■受賞対象となった研究の内容
松ぼっくりの形状から着想を得た、吸着口を可変できるソフトロボットハンドを開発した。把持したい物体の形状、重さ、大きさに対して適切な口径を変化させることができるロボットハンドを開発し、吸着力実験と把持実験を通してロボットハンドとしての性能を評価した。
■受賞にあたって一言
自分の研究が評価されて、光栄です。今後ソフトロボットが社会実装されるための1手段になってくれることを願います。
【石須滉大さん】
■研究題目、論文タイトル等
深い接触を許容するビジョンベース触覚センサを用いた回転物体における初期滑り検知
■研究者、著者
石須滉大、Luu Quan、HO, Anh Van
■受賞対象となった研究の内容
ロボットの物体把持のために初期滑り検知が必要。視覚ベース触覚センサを使ってこれまでよりも簡単な方法で初期滑りの特徴を検知した。
■受賞にあたって一言
まずは、本研究を支えてくださったLuu QuanさんとHo, Anh Van教授に深く感謝申し上げます。本研究がソフトロボット学の発展に貢献できれば光栄です。


令和7年5月7日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/05/07-1.html生きたままの細胞の微細構造に迫る ~再生医療、創薬分野における研究・開発の発展に貢献~
![]() ![]() |
株式会社 東レリサーチセンター 国立大学法人 |
生きたままの細胞の微細構造に迫る
~再生医療、創薬分野における研究・開発の発展に貢献~
| 株式会社東レリサーチセンター(所在地:東京都中央区日本橋本町一丁目1番1号、社長:吉川正信、以下「TRC」)は、国立大学法人北陸先端科学技術大学院大学(所在地:石川県能美市旭台一丁目1番地、学長:寺野稔)物質化学フロンティア研究領域の松村和明教授と共同で、生きている細胞の微細な構造を解析する新しい方法を開発しました。 細胞は、細胞膜や細胞質、細胞小器官などさまざまな部分から成り立っています。これらの構造を「細胞の微細構造」と呼び、細胞のさまざまな機能を発現するために重要な役割を果たしています。細胞の微細構造は非常に小さく、通常は電子顕微鏡1)や超解像蛍光顕微鏡2)を用いて観察します。TRCと松村和明教授の研究チーム(以下、「研究チーム」)は、小角X線散乱3)を用いて、ナノメートルスケール(1億分の1メートル)のレベルで細胞の微細構造を解析する新しい方法を開発しました。この方法は、低温など特殊な環境での観察も可能で、新たな細胞の微細構造の観察法として期待されます。また、近年注目されている「相分離生物学」4)では、細胞内のタンパク質や核酸の凝集や分散などの相分離現象が、細胞の柔軟な機能発現に重要な役割を果たしているとされています。今回用いた小角X線散乱では、相分離構造を高感度で観測することができ、細胞生物学や再生医療の発展に貢献することが期待されます。 この研究成果は、2024年7月8日公開のBiophysical Chemistry誌に掲載されました。また、この研究は北陸先端科学技術大学院大学の超越バイオメディカルDX研究拠点の支援を受けて行われました。 |
【背景】
細胞の周りの環境(例えば浸透圧)が変わると、細胞の大きさが変わることはよく知られています。しかし、それだけでなく、細胞膜の張力や細胞内のタンパク質の集まり方も影響を受けます。このような変化は、新規モダリティ医薬品5)の開発や再生医療の分野で重要な知見となっています。
従来、細胞の微細構造の観察は電子顕微鏡や超解像蛍光顕微鏡によって行われてきました。しかし、電子顕微鏡では、煩雑な前処理や真空下での観察のため、生きたままの細胞の観察は難しく、また、蛍光顕微鏡では、解像度はサブマイクロメートル程度であり、微細構造の観察が難しい場合があります。したがって、さまざまな環境で生きたまま、かつ、非常に小さなスケールで細胞の微細構造を観察する新しい方法が求められています。
【研究の概要】
これに対して研究チームは、大型放射光施設SPring-8のBL08B2ビームライン6)で、小角X線散乱を用いて細胞の微細構造の解析を行いました。その結果、細胞内のさまざまな構造からの信号が検出され、それらが環境の変化に敏感に反応していることがわかりました。例えば、タンパク質を作るリボソームは、低浸透圧(水分が多い)ではサイズが膨張しますが、高浸透圧ではリボソームのサイズが収縮し、リボソーム間の距離が近づく様子が観察されました。また、高浸透圧下では、細胞膜が折りたたまれてマルチラメラ構造を作ることや、タンパク質や核酸の凝集状態が変化することが明らかになりました(図1)。これらの結果は、タンパク質の生成や放出に関連する現象と考えられます。抗体タンパク質の品質や産生量と細胞の微細構造の関係性が明らかになることで、抗体医薬品の開発への貢献が期待されています。

図1. 細胞の小角X線散乱信号の浸透圧に対する変化。高浸透圧で特に明瞭な散乱信号が検出され、さまざまな細胞微細構造の変化が起こっている。
【今後の展開】
細胞の微細構造の解明は、創薬や再生医療などの分野で注目されています。細胞の機能(抗体産生や接着・増殖・分化など)を最適化するために、さまざまな環境で細胞の微細構造を詳細に解明することが重要です。今回開発した小角X線散乱による細胞の微細構造解析法は、従来の電子顕微鏡や蛍光顕微鏡の限界を補完し、これまで観察が難しかった不定な構造(相分離)の観察にも有効です。また、従来の顕微鏡観察では困難であった低温や高温などの環境でも構造変化を捉えることが可能です。特に低温環境での細胞の微細構造解析は、細胞や組織の凍結保存への応用が可能であり、新型コロナウイルスで注目されたワクチンの凍結保存技術の発展にも寄与が期待されます。これらの技術は、食料不足や移植医療、創薬分野の課題解決や研究・技術開発への貢献が期待されています。
【用語説明】
試料に電子線を照射し、反射あるいは透過電子像を得る方法。ナノメートルスケールの細胞小器官の形態観察が可能であるが、煩雑な前処理や真空下での観察のため、生きたままの細胞を観察することは不可能である。
特定のタンパク質を蛍光分子で標識することで、その対象物を明るく輝かせ、可視光の波長の限界を超えた分子レベルの解像度で細胞を観察できる方法。ただし、蛍光標識した対象が凝集している場合などは、可視光の限界を超えて見分けることはできない。また、蛍光分子の選択は困難なこともあり、観察環境での蛍光活性の確認も必要である。
X線を物質に照射したときに生じる散乱を観測する方法。X線の散乱は物質中の分子の並び方によって異なる散乱を起こし、物質のナノメートル(10億分の1メートル)スケールの構造を調べることができる。
細胞内で起こるタンパク質や核酸などの生体分子の相分離に関する生物学分野の一つ。生体分子の相分離によって膜のない細胞小器官が形成されることで、細胞の外部環境の変化に瞬時に応答していると考えられている。細胞内の相分離現象が、細胞内の化学反応やシグナル伝達に重要な役割を果たしている可能性があり、新たな生物学として近年注目を集めている。
従来の低分子化合物を用いた医薬品とは異なる仕組みで作用する医薬品。従来の医薬品では効果が限定された疾患や患者に対して、新たな治療法を提供できる可能性があり、近年、研究・技術開発が進められている。生物由来の抗体や核酸、遺伝子、細胞医薬品などが該当する。
SPring-8 は兵庫県の播磨科学公園都市にある世界最高輝度の放射光を生み出す理化学研究所の施設。SPring-8 では、この放射光を用いて、物質科学や生命科学などの幅広い研究が行われている。BL08B2ビームラインは兵庫県が設置したビームラインであり、放射光の産業利用支援を目的としている。
【掲載論文】
| 掲載誌 | Biophysical Chemistry, 312 (2024) 107287. |
| 論文題目 | Nanoscale intracellular ultrastructures affected by osmotic pressure using small-angle X-ray scattering |
| 著者 | Masaru Nakada, Junko Kanda, Hironobu Uchiyama, Kazuaki Matsumura |
| DOI | https://doi.org/10.1016/j.bpc.2024.107287 |
| 公表日 | 2024年7月8日(オンライン公開) |
令和6年7月10日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2024/07/10-1.html多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発
![]() |
国立大学法人北陸先端科学技術大学院大学 国立大学法人東北大学 |
多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発
ポイント
- 磁性―プラズモンハイブリッドナノ粒子を哺乳動物細胞のリソソーム内腔へエンドサイトーシス*1経路で高効率に送達することに成功
- ハイブリッドナノ粒子の細胞内輸送過程をプラズモンイメージング*2によって精確に追跡することで、高純度にリソソームを磁気分離するための最適培養時間を容易に決定可能
- リソソーム内腔にハイブリッドナノ粒子を送達後、細胞膜を温和に破砕し、4℃で30分以内にリソソームを磁気分離することで、細胞内の状態を維持したままリソソームの高純度単離に成功
| 北陸先端科学技術大学院大学(JAIST)(学長:寺野 稔、石川県能美市) 先端科学技術研究科 前之園 信也 教授、松村 和明 教授、平塚 祐一 准教授の研究チームは、東北大学(総長:大野 英男、宮城県仙台市)大学院生命科学研究科の田口 友彦教授と共同で、磁気分離能(超常磁性)とバイオイメージング能(プラズモン散乱*3特性)を兼ね備えた多機能ナノ粒子(磁性―プラズモンハイブリッドナノ粒子)を用いて、細胞内の状態を維持したままリソソームを迅速かつ高純度に単離する技術を世界で初めて開発しました。 |
【背景と経緯】
リソソームは60を超える加水分解酵素とさまざまな膜タンパク質を含む細胞小器官(オルガネラ)で、タンパク質、炭水化物、脂質、ヌクレオチドなどの高分子の分解と再利用に主要な役割を果たします。これらの機能に加えて、最近の発見では、リソソームがアミノ酸シグナル伝達にも関与していることがわかってきています。リソソーム機能障害に由来する疾患も数多く存在します。そのため、リソソームの機能をより深く理解することは基礎生物学においても医学においても重要な課題です。
リソソームの代謝物の探索は、近年急速に関心が高まっている研究分野です。たとえば、飢餓状態と栄養が豊富な状態でリソソームの代謝物を研究することにより、アミノ酸の流出がV-ATPaseおよびmTORに依存することが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。このように、外部刺激に応答したリソソームの動的な性質を調べるためには、リソソームを細胞内の状態を維持したまま迅速かつ高純度に分離する必要があります。
一般的に、リソソームの単離は密度勾配超遠心分離法*4によって行われていますが、密度勾配超遠心分離法には二つの大きな問題があります。まず一つ目の問題として、細胞破砕液にはほぼ同じ大きさと密度を持ったオルガネラが多種類あるため、得られた画分にはリソソーム以外の別のオルガネラが不純物として混ざっていることがよくあります。したがって、リソソーム画分のプロテオミクス解析を行っても、完全な状態のリソソームに関する情報を得ることができません。二つ目の問題として、分離プロセスに長い時間がかかるため、リソソームに存在する不安定なタンパク質は脱離、変性、または分解される可能性があります。この問題も、リソソームに関する情報を得ることを大きく妨げます。
これらの問題を克服するために、リソソームを迅速に単離するための他の技術が開発されました。たとえば、磁気ビーズを用いた免疫沈降法*5によってリソソームを迅速に分離できることが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。しかし、この手法では、ウイルスベクターのトランスフェクションなどによって抗体修飾磁気ビーズが結合できるリソソーム膜貫通タンパク質を発現させる必要があります。この方法は、密度勾配超遠心分離法よりも高純度のリソソーム画分が得られますが、リソソーム膜のタンパク質組成とその後のプロテオミクス解析に悪影響を与える可能性が指摘されています(J. Singh et al., J. Proteome Res., 2020, 19, 371-381.)。
【研究の内容】
本研究では、無傷のリソソームを迅速かつ効率的に分離する新たな単離法として、アミノデキストラン(aDxt)で表面修飾したAg/FeCo/Ag コア/シェル/シェル型磁性―プラズモンハイブリッドナノ粒子(MPNPs)をエンドサイトーシス経路を介してリソソームの内腔に集積した後、細胞膜を温和に破砕し、リソソームを磁気分離するという手法を開発しました(図1)。リソソームの高純度単離のためには、エンドサイトーシス経路におけるaDxt結合MPNPs(aDxt-MPNPs)の細胞内輸送を精確に追跡することが必要となります。そこで、aDxt-MPNPsとオルガネラの共局在の時間変化を、aDxt-MPNPsのプラズモンイメージングとオルガネラ(初期エンドソーム、後期エンドソームおよびリソソーム)の免疫染色によって追跡しました(図2)。初期エンドソームおよび後期エンドソームからのaDxt-MPNPsの脱離と、リソソーム内腔へのaDxt-MPNPsの十分な蓄積に必要な最適培養時間を決定し、その時間だけ培養後、リソソームを迅速かつマイルドに磁気分離しました。細胞破砕からリソソーム単離完了までの経過時間(tdelay)と温度(T)を変化させることにより、リソソームのタンパク質組成に対するtdelayとTの影響をアミノ酸分析によって調べました。その結果、リソソームの構造は細胞破砕後すぐに損なわれることがわかり、リソソームを可能な限り無傷で高純度で分離するには、tdelay ≤ 30分およびT = 4℃という条件で磁気分離する必要があることがわかりました(図3)。これらの条件を満たすことは密度勾配超遠心分離法では原理的に困難であり、エンドサイトーシスという細胞の営みを利用して人為的にリソソームを帯磁させて迅速かつ温和に単離する本手法の優位性が明らかとなりました。
本研究成果は、2022年1月3日(米国東部標準時間)に米国化学会の学術誌「ACS Nano」のオンライン版に掲載されました。
【今後の展開】
本手法はリソソーム以外のオルガネラの単離にも応用可能な汎用性のある技術であり、オルガネラの新たな高純度単離技術としての展開が期待されます。

図1 磁性―プラズモンハイブリッドナノ粒子を用いたリソソームの迅速・高純度単離法の概念図

| 図2 COS-1細胞におけるaDxt-MPNPsの細胞内輸送。 (A)aDxt-MPNPsの細胞内輸送の概略図(tは培養時間)。 (B)aDxt-MPNPsとリソソームマーカータンパク質(LAMP1)の共局在を示す共焦点レーザー走査顕微鏡像 (核:青、aDxt-MPNPs:緑、リソソーム:赤)。 aDxt-MPNPsはプラズモンイメージングによって可視化。 スケールバーは20 µm。 |

| 図3 単離されたリソソームのウエスタンブロッティングおよびアミノ酸組成分析の結果。 (A)ネガティブセレクション(NS)およびポジティブセレクション(PS)画分。 (B)PS画分の共焦点レーザー走査顕微鏡画像(緑:aDxt-MPNPs、赤:LAMP1)。 (C)NSおよびPS画分、および細胞破砕液のウエスタンブロット結果。 (D)異なる温度でtdelayを変化した際に得られたリソソーム画分のアミノ酸含有量の変化。 水色(4℃、tdelay = 30分)、青(4℃、tdelay = 120分)、ピンク(25℃、tdelay = 30分)、 および赤(25℃、tdelay = 120分)。 |
【論文情報】
| 掲載誌 | ACS Nano |
| 論文題目 | Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles (磁性―プラズモンハイブリッドナノ粒子を用いた完全な状態のリソソームの迅速かつ温和な単離) |
| 著者 | The Son Le, Mari Takahashi, Noriyoshi Isozumi, Akio Miyazato, Yuichi Hiratsuka, Kazuaki Matsumura, Tomohiko Taguchi, Shinya Maenosono* |
| 掲載日 | 2022年1月3日(米国東部標準時間)にオンライン版に掲載 |
| DOI | 10.1021/acsnano.1c08474 |
【用語説明】
*1.エンドサイトーシス:
細胞が細胞外の物質を取り込む過程の一つ
*2.プラズモンイメージング:
プラズモン散乱を用いて、光の回折限界以下のサイズの金属ナノ粒子を光学顕微鏡(蛍光顕微鏡や共焦点顕微鏡など)で可視化すること
*3.プラズモン散乱:
金属ナノ粒子表面での自由電子の集合振動である局在表面プラズモンと可視光との相互作用により、可視光が強く散乱される現象
*4.密度勾配超遠心分離法:
密度勾配のある媒体中でサンプルに遠心力を与えることで、サンプル中の構成成分がその密度に応じて分離される方法
*5.免疫沈降法:
特定の抗原を認識する抗体を表面修飾したビーズ用い、標的抗原が発現したオルガネラを細胞破砕液中から選択的に分離する免疫化学的手法
令和4年1月5日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2022/01/05-2.html本学発ベンチャー企業「BioSeeds株式会社」と学生の加藤さんが「スタートアップビジネスプランコンテストいしかわ2025」で最優秀起業家賞・優秀起業家賞を受賞
10月28日(火)、石川県地場産業振興センターで開催された「スタートアップビジネスプランコンテストいしかわ2025」において、本学発ベンチャーであるBioSeeds株式会社が最優秀起業家賞を、学生の加藤裕介さん(博士後期課程3年、物質化学フロンティア研究領域、松村和明研究室)が優秀起業家賞を受賞しました。
本コンテストは、革新的な技術や独自性のあるビジネスプランをもとに石川県での起業を促進し、将来の成長が期待される起業家を認定するもので、平成19年から毎年開催されています。これまでに、バイオテクノロジー、IT関連など独自の技術を持つ企業や、地域活性化などをテーマとした企業など、ユニークなビジネスプランを含め、数多くのスタートアップ企業が誕生しました。
※参考:ISHIKAWA START UP!
■受賞年月日
令和7年10月28日
■最優秀起業家賞
新型RNA/DNA分析装置「BioMuRun(バイオミューラン)」の開発・製造そして世界への販売
BioSeeds株式会社 ビヤニ マニシュ氏
概要:
バイオミューランは、進化分子工学や電気化学などの技術を駆使して開発した装置です。新型コロナウイルスの流行時に浮き彫りになった、「高価な装置がないと検査ができない」「変異株が見分けられない」「大量の検査が困難」といった課題を解決する装置で、本体は1辺が12センチメートルのサイコロ型で、使い捨てのカートリッジをセットし、パソコンやタブレットに接続すれば、わずか5分で10検体を同時に検査が可能です。PCR検査と同等の高い精度を誇り、変異株の特定も可能。コロナだけでなく、インフルエンザやノロウイルス、結核などの検査など感染症に対応できます。
装置本体だけでなく消耗品のカートリッジで収益を上げるビジネスモデルを採用し、装置は石川県内の企業、カートリッジはインドで製造します。特許も取得済みで2026年に人口14億人を抱えるインド市場で、大学や研究機関向けに販売を開始。その後、日本市場でも販売を計画しています。2028年からは医療用途へも展開し、インドと日本、日本と世界の架け橋になろうと意欲を燃やしています。
受賞にあたって一言:
日本に来て28年目になります。BioMuRunは 2001年からコンセプトを創り、プロトタイプ1号から6号まで製作し本年やっと完成しました。インドと日本の合作で生まれた装置で、感染症の検査のみならず、DNA、RNAの分析など幅広く使用が可能です。
ポータブルで安価なこの装置をPCRなど大型機器を備えることのできない発展途上国などに普及し、将来のパンデミックに備えることを目指しています。ISICO主催のスタートアップビジネスプランコンテストで最優秀賞起業賞を頂き、その名に恥じぬよう石川県から世界に羽ばたく企業になるべく全力を尽くして参ります。引き続き皆様のご支援を期待しております。
バイオシーズ株式会社 社長 ビヤニ・マニシュ
バイオシーズ株式会社 社長 ビヤニ・マニシュ氏
■優秀起業家賞
新規凍結保存法を用いた豚精液の凍結保存事業
北陸先端科学技術大学院大学 博士後期課程3年 加藤裕介
概要:
本事業では、未だ実用化に至っていない「豚凍結精液」の確立を目指します。豚凍結精液は、現在広く普及している豚人工授精に多くの利点をもたらすだけでなく、豚精液の国際流通や付加価値の高い精子の販売といった、養豚業界の新たな市場を開拓する可能性を秘めています。
受賞にあたって一言:
このたびは優秀起業家賞を頂き、大変光栄に存じます。ファイナリストの中では唯一の学生でしたが、チームとして評価をしていただいたと思っております。本事業の共同研究者であり、指導教員である松村和明教授に、この場を借りて心より御礼申し上げます。また、本事業のブラッシュアップに多くのご助言をいただきました、株式会社SAKU代表取締役の谷沢鷹続様と石川県産業創出支援機構の皆様に、深く感謝いたします。
北陸先端科学技術大学院大学 博士後期課程3年 加藤裕介
博士後期課程3年 加藤裕介氏(右)
令和7年12月11日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/12/11-1.html学生のSUMALDEさんがPVSEC-36においてBest Oral Presentation Awardを受賞
学生のSUMALDE, Adrian Augusto Mendozaさん(博士後期課程2年、サスティナブルイノベーション研究領域、大平研究室)が36th International Photovoltaic Science and Engineering Conference(PVSEC-36)においてBest Oral Presentation Awardを受賞しました。
PVSEC-36は、令和7年11月9日~14日まで、タイ・バンコクのチュラロンコン大学(Chulalongkorn University)にて開催された、太陽光発電システムに関する国際会議です。同会議では、世界中の研究者や技術者が一堂に会し、最先端の研究成果について活発な議論が行われました。
※参考:PVSEC-36
■受賞年月日
令和7年11月14日
■研究題目、論文タイトル等
Development of encapsulant-less vertical crystalline silicon photovoltaic modules with various thermoplastic materials as module base
■研究者、著者
Adrian Augusto M. Sumalde, Kensaku Maeda, and Keisuke Ohdaira
■受賞対象となった研究の内容
Encapsulant-less PV modules were developed to address the recyclability concerns in conventional crystalline silicon (c-Si) photovoltaic (PV) modules. Specifically, these modules were conceptualized for vertical installations for building integration, targeting high urban density areas and/or locations with heavy snowfall conditions. This work evaluated the potential of several thermoplastics as primary material for module base, providing both physical stability and aesthetic appeal. The design utilizes grooves for easy installation and removal of module components, as well as "corner" and "bar" holding structures to minimize partial shading and vertical stability. Mini-modules were 3d-printed using black polycarbonate (PC), translucent polyethylene terephthalate glycol (PETG), and white acrylonitrile styrene acrylate (ASA). Electrical performance was evaluate using 1-sun illuminated J - V characteristics, EQE spectra, and electroluminescence imaging, while an initial 72-hour damp-heat test was conducted to investigate the response of modules to thermo-hygrometric stress. Using corner holding structures in the module base design, performance losses were successfully minimized, kept to as low as 0.36% ηabs for the white ASA modules. The translucency of PETG modules and white colors of ASA modules also resulted in cell-to-module ratios above 90%, with confidence that upscaling will improve these values. Future direction involves upsizing and redesigning for additional physical stability, to be evaluated using moisture ingress and vibration stability tests.
■受賞にあたって一言
I am truly honored to have received the award at PVSEC-36. It validated my efforts throughout the year and motivates me to continue working hard in my research and my PhD studies. I would like to thank Professor Keisuke Ohdaira and Senior Lecturer Kensaku Maeda for their continuous guidance and instilling discipline in my daily research activities in JAIST, as well as to NEDO and Specially Appointed Professor Marwan Dhamrin, The University of Osaka, for their technical support for the fabrication of our solar cells. Lastly, I would also like to thank Associate Professor Kotona Motoyama, Kanazawa University, who strengthened my awareness of responsible research and innovation. Through her, I am always reminded that whenever we communicate our research, the benefit to society is a common language that we all can understand.


令和7年12月9日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/12/09-1.htmlリチウムイオン電池の劣化原因をナノスケールで可視化 ― 新手法「ケプストラム照合解析」で電池現象の解明に貢献 ―
![]() ![]() |
北陸先端科学技術大学院大学 東京科学大学 |
リチウムイオン電池の劣化原因をナノスケールで可視化
― 新手法「ケプストラム照合解析」で電池現象の解明に貢献 ―
【ポイント】
- リチウムイオン電池の劣化につながる正極の結晶構造変化をナノメートルスケールで可視化
- 新開発の「ケプストラム照合解析」により、高空間分解能・広視野・低損傷を同時に実現
- 電池劣化の原因となる界面での構造変化を解明し、高性能電池開発への貢献に期待
| 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域の麻生浩平講師、掛谷尚史大学院生(博士後期課程)、土田拓夢大学院生(博士前期課程)、大島義文教授、東京科学大学 物質理工学院応用化学系の伊藤広貴大学院生(博士前期課程)(研究当時)、淺野翔大学院生(博士後期課程)(研究当時)、渡邊健太助教、平山雅章教授、物質・材料研究機構 マテリアル基盤研究センターの三石和貴副センター長、木本浩司センター長、蓄電池基盤プラットフォームの篠田啓介エンジニア、エネルギー・環境材料研究センターの増田卓也センター長の研究グループは、リチウムイオン電池の結晶構造変化をナノメートル (nm:10億分の1メートル)スケールで可視化する新手法「ケプストラム照合解析」を確立しました。 新手法によって、従来の分析手法では困難だった、高空間分解能(約1 nm)・広視野(数百nm)・試料低損傷の三点を同時に実現しました。そして、この手法をエピタキシャル薄膜*1として作製したコバルト酸リチウム(LiCoO2)正極に応用することで、電解質との界面付近において、電池劣化の原因となるナノスケールの構造変化を可視化することに成功しました。今回、開発された手法は、電池における構造変化の理解を加速することで、電池の劣化原因解明や高性能化に役立つと期待されます。 本研究成果は、2025年10月21日(米国東部標準時間)に科学雑誌「Nano Letters」誌のオンライン版で公開されました。 |
【研究概要】
スマートフォンや電気自動車にはリチウムイオン電池(LIB)が欠かせません。その正極として広く用いられている材料が、層状の結晶構造(原子の並び方)を有するリチウム遷移金属酸化物(以下、層状正極)です。LIBの長時間稼働を実現するには、より高電圧で動かすことが重要となります。一方、高電圧で充放電を繰り返すと、液体電解質と接する界面において、層状正極がスピネル構造や岩塩構造*2に変化して、LIBの劣化を引き起こします。界面を起点として数nm のスケールで進行する構造変化を理解するために、解析が求められてきました。
従来の光やX線を使った観察では、空間分解能が数十〜数百nmに限られます。電子顕微鏡なら原子スケールで観察できますが、観察視野が約50×50 nm2に制限される課題と、多量の電子照射によって観察中に試料が損傷する課題がありました。つまり、「ナノ空間分解能」「広視野」「低試料損傷」の三つを両立して、層状正極の構造を解析できる手法がありませんでした。
本研究グループでは、層状正極の代表例であるコバルト酸リチウム(LiCoO2)の構造(図1a)を調べるために、先進的な電子顕微鏡手法の一つである走査ナノビーム電子回折*3に注目しました (図1b)。これは、直径約1 nmの電子線をスキャンさせながら試料に照射し、結晶構造を反映する電子回折図形を得て、高速カメラに記録する手法です。高電圧で100サイクル充放電させたエピタキシャルLiCoO2について、あるスキャン位置での回折図形(図1c)と、結晶構造モデルから計算した回折図形(図1d)とで差異が認められます。電子回折図形には、結晶構造の情報に加えて、試料の厚さや僅かな傾きに依存するスポットの強度変化が含まれるため、比較が困難です。
そこで、音声信号処理で用いられるケプストラム解析*4に着目しました。ケプストラムは、回折図形の強度を対数変換してフーリエ変換し、その振幅を得ることで求められます。実験と計算のケプストラム(図1e、f)では、試料の厚さや傾きを反映する成分は中心スポットに、結晶構造の周期性を反映する成分は周囲のスポットにそれぞれ分離されます。構造由来のスポットは実験と計算でよく一致するため、この領域が層状構造だと分かります。この一致度は、相互相関関数(2つの画像が似ているほど高い値を示す関数)を用いることで、数値として評価できます。層状構造に加えて、スピネルや岩塩構造についても同様の解析を行い、試料各位置での構造を調べました。独自に開発した一連の解析を「ケプストラム照合解析」と名付けました。
結晶構造の合成マップ(図1g)では、LiCoO2正極の大部分はもとの層状構造を保持していましたが、電解質との界面から正極側へ約3 nmにかけてスピネル・岩塩構造が観察されました。本手法は、約1 nmの高空間分解能と、正極の内部と界面の両方をカバーする約300×100 nm2の広視野を同時に達成しました。さらに、原子分解能電子顕微鏡など電子線を多用する他の手法と比べ、本手法の照射量は2ケタ以上低いことが分かりました。観察中の試料損傷を低減でき、従来手法よりも信頼性の高い結果が得られます。
界面での構造変化に対して、LiCoO2正極を別の物質でコーティングして保護する対策や、異なる元素をわずかに添加する対策が提案されています。さらに、次世代デバイスとして注目を集めている全固体LIBでも、ナノスケールの構造変化が生じると報告されています。今後、本手法を活用することで、劣化メカニズムの詳細な解明や、コーティングや添加などの効果の検証を計画しています。本成果は、LIBの現象解明を目指す学術研究や、高性能LIB開発に広く貢献すると期待されます。

| 図1(a)[100]方位から見た層状LiCoO2の結晶構造モデル。(b)走査ナノビーム電子回折の模式図。(c)実験と(d)計算の電子回折図形。(e)実験と(f)計算のケプストラム。中心以外の明るいスポットが結晶構造に由来します。(g)結晶構造の合成マップ。青、緑、赤色が強いほど、層状、岩塩、スピネル構造であることを示します。 |
【研究資金】
本研究の一部は、日本学術振興会(JSPS) 科研費(JP22K14473、JP25K18108、JP24H00042)、科学技術振興機構(JST) 革新的GX技術創出事業(GteX)プログラム(JPMJGX23S5、JPMJGX23S6)、同 戦略的創造研究推進事業 先端的低炭素化技術開発(ALCA)、物質・材料研究機構(NIMS) 連携拠点推進制度、三谷研究開発財団、澁谷学術文化スポーツ財団、池谷科学技術振興財団、中部電気利用基礎研究振興財団、旭硝子財団、北陸先端科学技術大学院大学 研究拠点形成支援事業の支援を受けて実施されました。本研究の一部は、NIMS蓄電池基盤プラットフォーム、マテリアル先端リサーチインフラ(JPMXP1222JI0007、JPMXP1223JI0012、JPMXP1224JI0005)にて実施されました。
【論文情報】
| 雑誌名 | Nano Letters |
| 論文名 | Low-Dose Nanoscale Visualization of Crystal Phases in Epitaxial Cathodes via Cepstral Matching of Scanning Nanobeam Electron Diffraction |
| 著者 | Kohei Aso, Takafumi Kakeya, Takumu Tsuchida, Hiroki Ito, Sho Asano, Kenta Watanabe, Kazutaka Mitsuishi, Koji Kimoto, Keisuke Shinoda, Takuya Masuda, Masaaki Hirayama, and Yoshifumi Oshima |
| 掲載日 | 2025年10月21日 |
| DOI | 10.1021/acs.nanolett.5c03692 |
【用語説明】
目的の物質を、基板の結晶構造に合わせて成長させた薄膜。本研究ではチタン酸ストロンチウム(SrTiO3)(111)基板上に成長させたLiCoO2薄膜を用いています。結晶方位や露出表面を制御できるため、通常の粉末多結晶正極よりも観察が容易になります。
おおむね、層状LiCoO2からリチウム(Li)が抜けて、そこに一部のコバルトが入り込んだ構造。層状構造ではLiイオンが(003)面内を2次元的に移動できますが、スピネル構造や岩塩構造ではその経路が失われるため、Liイオン伝導性が低下します。さらに、一度これらの構造に変化すると層状構造には戻りにくくなります。そのため、高電圧で充放電を繰り返すとLIBの劣化につながります。特に、充電の最大電圧が4.2V(vs Li/Li+)超えたときに現れやすいです。
細く絞った電子線を試料上で走査し、各位置で電子回折図形を記録する手法。回折波の配置を解析することで、試料の結晶構造を求めることができます。実空間2次元と逆空間2次元に対する強度を示す、複雑かつ膨大な4次元データが得られるため、適切なデータ処理を施して情報を抽出する必要があります。
音声を解析するために開発された、信号の細かく変化する成分となだらかに変化する成分を分離する信号処理手法。音声分野では、声帯での原音成分と、口や鼻での共鳴によって原音から変化した成分とを分離する目的で用いられます。
令和7年10月28日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/10/28-2.html令和7年度 第2回 超越バイオメディカルDX研究拠点 ネオ・エクセレントコアセミナー(科研費「新規細胞内氷晶形成測定法の開発と次世代三次元組織凍結保存」共催セミナー)
下記のとおりセミナーを開催しますので、ご案内します。
| 日時 | 令和7年10月24日(金) 13:30~16:55 |
| 場所 | JAISTイノベーションプラザ 2F シェアードオープンイノベーションルーム |
| 概要 | 本セミナーでは、凍結保存の新展開を切り拓く先端センシング技術を紹介します。高分子凍結保護剤の開発から、高磁場DNP-MAS-NMRやダイヤモンド量子センサー、スーパーコンピュータを活用した計算科学、さらにX線・中性子散乱による微細構造解析、液化窒素式機器の開発まで、量子・高磁場・放射光・計算科学の最前線研究を結集し、凍結保存の未来を展望します。 |
| プログラム | 13:30 開始 開会あいさつ 13:35 「高分子凍結保護剤の開発と凍結状態センシングへの挑戦」 松村 和明 教授 (北陸先端科学技術大学院大学) 14:05 「高磁場DNP-MAS-NMR法の装置と方法論の開発」 松木 陽 准教授 (大阪大学) 14:35 「ダイヤモンド量子センサーのバイオ応用概観」 安 東秀 准教授 (北陸先端科学技術大学院大学) 15:05-15:20 コーヒーブレーク 15:20 「JAISTスパコンを活用したデータ駆動型材料研究」 本郷 研太 准教授 (北陸先端科学技術大学院大学) 15:50 「X線/中性子散乱による凍結保存における細胞微細構造センシング」 中田 克 氏 (株式会社東レリサーチセンター) 16:20 「液化窒素式凍結保存機器の開発」 吉村 滋弘 氏 (太陽日酸株式会社) 16:50 終了 閉会あいさつ |
| 使用言語 | 日本語 |
| 参加申込 | ・参加費無料 ・要予約(定員30名) 下記の担当へ前日までにメールにてお申し込みください。 【本件担当・予約申込先】 北陸先端科学技術大学院大学 超越バイオメディカルDX研究拠点 拠点長 松村 和明 (mkazuaki |
ユネスコ無形文化遺産「金沢金箔」の薄さと輝きを生む謎を解明 ―伝統工芸と材料科学が出会う、新たな発見―
![]() |
北陸先端科学技術大学院大学 大阪大学 |
ユネスコ無形文化遺産「金沢金箔」の薄さと輝きを生む謎を解明
―伝統工芸と材料科学が出会う、新たな発見―
【ポイント】
- 金沢金箔は、打ち延ばす工程によって箔全体を立方晶{001}集合組織(結晶粒の結晶方位が特定の方位に集中している状態)に配向させていることを解明。
- 金箔の上下に和紙を挟んで叩くことで温度上昇を防ぎ、再結晶化や回復を阻止。
- 通常は働かない{110}すべり系(原子の層がずれて動く仕組み)が特別に活性化し、箔全体の均一な薄さと輝きを実現。
| 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域のXU, Yuanzhe大学院生(博士後期課程)、麻生浩平講師、村田英幸教授、大島義文教授、大阪大学 超高圧電子顕微鏡センターの市川聡特任教授(常勤)の研究グループは、最新の電子顕微鏡技術により、ユネスコ無形文化遺産に登録されている金沢金箔の箔打ち工程で「再結晶や回復を防ぐ工夫」や「特殊な滑り面の働き」を確認することに成功し、金沢金箔の薄さと輝きを保つ仕組みを世界で初めて解明しました。この成果は、金沢金箔の保存・継承に貢献するだけでなく、将来的にナノ材料や高機能薄膜の開発にもつながる可能性があります。 本研究成果は、2025年9月26日 (英国標準時間)に科学雑誌「npj Heritage Science」誌のオンライン版で公開されました。 |
【研究概要】
金沢金箔(図1(a))は、寺社仏閣や伝統工芸品を飾るだけでなく、文化財の修復に不可欠な素材です。その特徴は「世界で最も薄い金属箔」(わずか100ナノメートル=髪の毛の約1/1000)という極薄性と、変わらない光沢にあります。この魅力から、ユネスコ無形文化遺産に登録されました。これまでの研究では、金沢金箔が安定した{001}集合組織を形成することは知られていましたが、その過程は不明でした。通常の金属では、箔打ちにより{110}集合組織が発達しますが、同時に再結晶や回復が起き、面内の結晶方位はランダムになると考えられていました。したがって、なぜ金沢金箔が均一で安定した{001}集合組織を示すのかは長年の謎でした。この謎を解き明かすことは、伝統工芸の継承と材料科学の進展の双方にとって重要な課題です。本研究では、最先端の技術である、電子後方散乱回折(EBSD)*1と世界最高加速電圧の超高電圧透過電子顕微鏡(UHVEM)*2 (加速電圧 2MV)を用いて、無加工で系統的に金沢金箔の分析を行いました。その結果、従来の金属学では予想されなかった「非八面体すべり系」という特殊な変形が室温の槌打ち工程で活性化し、金箔の結晶配向を整えることを明らかにしました。
本研究では、製造の中間段階にあたる「金澄(約1 μm)」と最終段階の「金箔(約100 nm)」を対象とし、電子後方散乱回折(EBSD)*1および超高電圧透過電子顕微鏡(UHVEM)*2を用いて局所的な結晶性の調査を行いました。その結果、金澄は、面内の結晶方位はランダムな{110}集合組織となっていましたが、転位密度が高く、再結晶が起きていないことがわかりました。一方、最終段階の金箔は、面内の結晶配向も高い{001}集合組織となっていました(図1(b))。ただし、転位密度は著しく増加しており、回復や再結晶が生じていないことを示唆していました。加えて、{110}面に平行な多数のすべり帯があり、その多くが直交していることを観察しました(図1(c))。この事実は、非八面体的な{110}-<110>すべり系が活性化していることを示唆しています。通常の面心立方晶(FCC)金属では、このような非八面体のすべり系が動くことはなく、金箔が特殊な変形状態にあることがわかりました。
以上の結果から考察を行い、金沢金箔は従来のFCC金属とは異なる変形メカニズムによって特異な集合組織を形成することが分かりました。具体的には、熱間圧延や焼鈍処理を施した金属材料と異なり、金沢金箔は再結晶や回復を伴わずに加工が進行しています。そのため、箔打ち過程において転位が絡み合うため、通常活性化する{111}-<110>すべり系が抑制されます。また、膜厚が転位ループのサイズに近い200 nm程度になると、転位ループの一部が表面を突き抜けるため、薄膜全体を貫通するらせん転位が多数残存します。これらのらせん転位は動きやすいため、交差すべりが生じやすくなります。この交差すべりが進化した結果、非八面体的な{110}-<110>すべり系が活性化します。この{110}-<110>すべり系は、箔打ち方向に対し、結晶方位を[110]から[001]へ徐々に回転させることができます。なお、加工時に金箔の上下に和紙を挟んで叩くことで、表面摩擦を低減するとともに温度上昇を防いでいました。つまり、この温度制御によって再結晶や回復が抑制され、上述したような特殊な変形が実現したと説明できます。
本研究の成果は、金沢金箔という無形文化遺産の科学的理解を深め、伝統技術の保存・継承に確かな裏付けを与えるものです。これにより、文化財修復における信頼性の向上や、安定供給に向けた技術支援が可能になります。さらに、極薄金属膜における特殊な変形メカニズムの知見は、構造敏感な次世代のナノ材料や高機能薄膜デバイスの開発にも応用が期待されます。具体的には、電子材料、センサー、装飾材など、従来にない性能やデザイン性を備えた新しい製品の創出につながる可能性があります。

| 図1 (a) 金沢金箔の写真。(b)金沢金箔の電子後方散乱回折(EBSD)から得た方位マップ。色は、箔打ち方向に対する結晶方位を示します(赤は、[001]方位)。(c) 最終段階の金沢金箔のTEM像。黒い帯に対応する[110]方位に沿ったすべり帯は、お互いに直交しています。 |
【論文情報】
| 雑誌名 | npj Heritage Science |
| 論文名 | Deformation mechanism behind the unique texture of Kanazawa gold leaf |
| 著者 | Yuanzhe Xu, Satoshi Ichikawa, Kohei Aso, Hideyuki Murata, and Yoshifumi Oshima |
| 掲載日 | 2025年9月26日 |
| DOI | 10.1038/s40494-025-02055-5 |
【用語説明】
材料表面で後方に散乱した電子回折の菊池パターンを解析し、ナノメートルの分解能で結晶方位、組織、転位密度のマップを得ることができます。
通常の透過電子顕微鏡の加速電圧が100-200 kVであるのに対し、超高電圧透過電子顕微鏡の加速電圧は、2MVと一桁大きい。そのため、入射電子の透過能が高く、厚い試料の内部構造を観察することができます。本研究の金箔、金澄を観察用に薄片加工することなくそのまま観察することができます。
令和7年10月7日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/10/07-1.html学生の井上さんがANTEC® 2025においてBest of ANTEC® 2025に選出
学生の井上貴博さん(博士後期課程3年、物質化学フロンティア研究領域、山口政之研究室)がAnnual Technical Conference(ANTEC® 2025)においてBest of ANTEC® 2025に選出されました。
ANTEC® 2025は、米国プラスチック技術者協会(SPE:Society of Plastics Engineers) が主催し、令和7年3月3日~6日にかけて、米国フィラデルフィアにて開催された国際会議です。
ANTEC® 2025では、プラスチックおよび高分子科学に関する産業界、研究機関、学術機関、そして国際的な研究における最先端の成果が紹介され、新たなプラスチック技術、プロセス、高分子研究、新素材など幅広いテーマが取り上げられる中、今年は特に科学的・技術的・産業的な課題とその解決策に焦点が当てられました。
SPEは、ANTEC® 2025において、特に影響力の大きかった発表を厳選し、「Best of ANTEC® 2025」としてオンデマンドで限定配信しています。このコレクションは、令和7年12月31日までいつでも視聴が可能です。
また、「Best of ANTEC®」に選出された発表者には、"Outstanding Presentation"(優秀発表)の認定証が授与されます。
※参考:ANTEC® 2025
■受賞年月日
令和7年7月15日
■研究題目、論文タイトル等
Enhancement of Polypropylene Crystallization by Addition of Novel Nucleating Agent
■研究者、著者
井上貴博、山口政之
■受賞対象となった研究の内容
新しく開発されたポリプロピレン用結晶核剤の性能を調べ、結晶化温度など核剤性能を評価する指標が既存の材料よりも優れていることを明らかにした。
■受賞にあたって一言
この度は、ANTEC® 2025におきまして、Best of ANTEC®という賞を頂けたことを大変光栄に思います。本研究を遂行するにあたり、日頃よりご指導ご鞭撻いただいている山口政之教授に心より御礼申し上げます。引き続き、研究活動に努めてまいりたいと思います。
令和7年9月1日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/09/09-1.html人と安全に協働できる"ソフトロボットリンク"を開発 触れてわかる、近づいて感じる-近接覚と触覚のハイブリッドセンシング技術「ProTac」
人と安全に協働できる"ソフトロボットリンク"を開発
触れてわかる、近づいて感じる-近接覚と触覚のハイブリッドセンシング技術「ProTac」
【ポイント】
- 透明・不透明を切り替えられるソフトスキンと視覚センサーを用い、近接センシングとスキン変形の解析による触覚センシングを備えたマルチモーダルソフトセンシング技術「ProTac」を開発
- 市販ロボットアームにも取り付け可能
- 従来の剛体リンクでは困難とされる、接触の多い環境下での動作制御が可能
- 農業や介護など、人とロボットが協働する作業への応用に期待
- AI駆動型センシングフュージョン技術
| 北陸先端科学技術大学院大学 ナノマテリアル・デバイス研究領域のクアン・ハン・ルウ研究員、ホ・アン・ヴァン教授らの研究チームは、透明・不透明を電圧により切り替えられるソフト素材と視覚センシング技術を融合し、近接・触覚の両モードを切り替えて検知できるマルチモーダルソフトセンシング技術「ProTac」を世界で初めて開発しました。ProTacを用いたソフトロボットリンクは、周囲の物体を検知する近接センシングとマーカー画像の変化から触覚情報を読み取る触覚センシングを一台で切り替えて行うことができ、人との接触が多い環境で安全に動作制御が可能です。なお、本研究成果は、2025年7月28日にIEEE Transactions on Robotics(T-RO)に掲載されました。 |
【研究概要】
近年、人と同じ空間で安全かつ柔軟に作業できるロボットのニーズが高まっています。これに応えるため、私たちの研究チームは、ソフト機能材料と画像や映像から情報を取得・解析する技術である視覚センシング技術を融合した新しいマルチモーダルソフトセンシング技術「ProTac」(図1)を開発しました。
ProTacは、電圧をかけることで透明・不透明を切り替えられるポリマーディスパースド液晶(PDLC)フィルム注1)と内蔵カメラを組み合わせています。透明時には視界を活用して周囲の物体の近接を検知し、不透明時にはマーカー画像の変化から触覚情報の取得を実現します。また、最新の深層学習ベースの視覚アルゴリズムを用いることで、安定したリアルタイムセンシングが可能です。

図1:ProTacのイメージ図
この技術を用いたソフトロボットリンクは、市販のロボットアームやカスタム製作されたソフトロボットにも取り付け可能で、障害物検知に基づく速度調整や接触時の反射動作など、多様な制御戦略を実現します。ProTacを備えたソフト多機能センシングアームは、人とロボットが密に連携する場面や、従来の剛体リンクでは困難な動作制御において高い性能を示しました。
今後は、この技術を手足や胴体などロボットの各部位に応用し、高機能なマルチモーダルスキンを備えたヒューマノイドロボットの実現が期待されます。また、農業、家庭サービス、介護分野など、幅広い分野での応用も見込まれます。
【研究資金】
本研究は、日本学術振興会 科学研究費補助金 特別研究員奨励費(24KJ1203)、国立研究開発法人 科学技術振興機構(JST)さきがけ(JPMJPR2038)による財政的支援を受けて実施されました。
【論文情報】
| 掲載誌 | IEEE Transactions on Robotics |
| 論文タイトル | Vision-based Proximity and Tactile Sensing for Robot Arms: Design, Perception, and Control |
| 著者 | Quan Khanh Luu, Dinh Quang Nguyen, Nhan Huu Nguyen, Nam Phuong Dam, Van Anh Ho |
| 掲載日 | 2025年7月28日 |
| DOI | 10.1109/TRO.2025.3593087 |
【用語説明】
電圧により透明・不透明を切り替えられる液晶材料。柔軟であり、ディスプレイやスマートウィンドウなどの光の透過を制御する用途に使用される。
令和7年8月22日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/08/22-1.html物質化学フロンティア研究領域の都教授らの論文がSpringer Nature Research CommunitiesのBehind the Paperで紹介
物質化学フロンティア研究領域の都 英次郎教授らの最新の論文「2種の細菌による新たながん治療へのアプローチ『AUN(阿吽)』を開発―免疫不全状態でも機能が期待されるがん治療に向けて―」が、Springer Nature Research CommunitiesのBehind the Paperにて紹介されました。研究開発の発端、裏話などが紹介されています。なお、本研究は、文部科学省 科学研究費補助金 基盤研究A(23H00551)、同 挑戦的研究(開拓)(22K18440、25K21827)、国立研究開発法人 科学技術振興機構(JST) 研究成果最適展開支援プログラム(A-STEP)(JPMJTR22U1)、同 大学発新産業創出基金事業 スタートアップ・エコシステム共創プログラム(JPMJSF2318)、同 次世代研究者挑戦的研究プログラム(SPRING) 未来創造イノベーション研究者支援プログラム(JPMJSP2102)、公益財団法人 発酵研究所、公益財団法人 上原記念生命科学財団、本学超越バイオメディカルDX研究拠点、本学生体機能・感覚研究センターならびに第一三共株式会社の支援のもと行われたものです。
■論文概要
本研究では、2種類の細菌がまるで"阿吽の呼吸"のように精緻に連携しながら、がん細胞を選択的に攻撃するという新たな治療へのアプローチ「AUN(阿吽)」の開発に成功しました。
研究チームが用いたのは、"AUN(阿吽)"と名付けられた2種の天然細菌:腫瘍内に常在するProteus mirabilis[阿形(A-gyo)]と、光合成を行うRhodopseudomonas palustris[吽形(UN-gyo)]です。この互いに異なる機能を持つ2種の細菌が、それぞれの役割を果たしながら、以下の一連のプロセスを協調的に引き起こし、抗腫瘍効果を示すことが確認されました。まず、がん特有の環境に誘導されて、両細菌はマウス皮下腫瘍モデルにおいて腫瘍の血管やがん細胞を選択的に破壊。これにより、正常組織への影響を最小限に抑えつつ、がん組織だけを効果的に抑制する可能性が示唆されました。さらに、がんが産生する特異的な代謝物の存在下で、片方の細菌(A-gyo)は線維状の構造へと変化。この形態変化により抗腫瘍効果が一段と強化されることが判明しました。興味深いのは、経時的に両細菌の集団構成(ポピュレーション)も動的に変化し、最適な役割分担が自然に形成される点です。加えて、病原性を抑制しながら、重篤な副作用の原因となるサイトカインストームの発生も回避できる可能性があるという点も特徴です。
本研究は、2種の細菌の持つ自然な"協調戦略"を巧みに活用することで、安全かつ効果的ながん治療の新たな道を拓くものです。今後、このメカニズムを応用した新しいがん治療法の社会実装に向けて、スタートアップ創業を計画しています。
プレスリリース詳細:2種の細菌による新たながん治療へのアプローチ「AUN(阿吽)」を開発 ―免疫不全状態でも機能が期待されるがん治療に向けて―
令和7年8月7日
出典:JAIST お知らせ https://www.jaist.ac.jp/whatsnew/info/2025/08/07-2.html文部科学省マテリアル先端リサーチインフラ(ARIM)シンポジウム「ナノ物性の可視化と理解 : AIと拓くマテリアル解析の新展開」
| 日 時 | 令和7年9月11日(木)13:30~17:00 令和7年9月12日(金) 9:30~12:10 |
| 場 所 | 北陸先端科学技術大学院大学 知識科学系講義棟2F 中講義室 (ハイブリッド開催) |
| 定 員 | 90名(事前登録制) イベントへのご参加は、できるだけ事前登録をお願いしています。事前にご登録いただくことで、スムーズな受付や資料の準備が可能となります。 ただし、事前登録が難しい場合でも、当日現地での参加も可能です。直接会場にお越しいただければ、スタッフがご案内しますのでご安心ください。 |
| 参加費 | 無料 |
| 参加申込み フォーム |
https://forms.gle/CK6NjxhuR4GLpBpE9 |
| 参加申込締切 | 令和7年9月8日(月) |
| 概 要 | 文部科学省マテリアル先端リサーチインフラ(ARIM)事業では、現在、電子顕微鏡(TEM)像や分光データの収集・蓄積を進めており、近くそのデータの公開と共用が始まります。このシンポジウムでは、データ駆動型研究の分野でご活躍の先生方に、TEMから創出されたデータから、どのような隠された情報が読み取れるのか、その利活用の可能性を提示していただきます。このシンポジウムが、これからTEMデータを使用したデータ駆動型研究を推進することを考えている方々の一助となることを願っております。 |
| プログラム | ■ 1日目 9/11 (木) 13:30-13:40 開会の辞 大島 義文(北陸先端科学技術大学院大学 先端科学技術研究科 教授/副研究科長) 13:40-14:30 計測インフォマティクスのTEM応用へのビジョンと問題点 武藤 俊介(名古屋大学 未来材料・システム研究所 高度計測技術実践センター 電子顕微鏡計測部 教授) 14:30-15:20 微細構造計測データのための機械学習 志賀 元紀(東北大学 未踏スケールデータアナリティクスセンター 教授) 15:50-16:40 生成AIを活用した計測データからの情報抽出と物質設計 溝口 照康(東京大学 生産技術研究所 教授) 16:40-17:30 4D-STEMと教師無し機械学習によるナノ領域構造解析 木本 浩司(物質・材料研究機構 マテリアル基盤研究センター マテリアル基盤研究センター センター長) ■ 2日目 9/12 (金) 9:30-10:20 Data-Driven AI for Visualizing Materials Dynamics HIEU CHI DAM(北陸先端科学技術大学院大学 先端科学技術研究科 教授) 10:20-11:10 情報科学の援用によるナノスケール幾何学情報の抽出および3次元可視化 井原 史朗(九州大学 先導物質化学研究所 助教) 11:10-12:00 画像処理を活用した電子顕微鏡画像からのナノ材料情報の抽出 麻生 浩平(北陸先端科学技術大学院大学 先端科学技術研究科 講師) 12:00-12:05 閉会の辞 高村 由起子(北陸先端科学技術大学院大学 先端科学技術研究科 教授/マテリアル先端リサーチインフラ スポーク機関 業務主任者) |
| 主 催 | 主催/国立大学法人 北陸先端科学技術大学院大学 (文部科学省 マテリアル先端リサーチインフラ スポーク機関) 協賛/国立大学法人 東海国立大学機構 名古屋大学 (文部科学省 マテリアル先端リサーチインフラ 次世代バイオマテリアルハブ機関) 協賛/国立大学法人 九州大学 (文部科学省 マテリアル先端リサーチインフラ 次世代ナノスケールマテリアルハブ機関) |
| 問合せ先 | 国立大学法人 北陸先端科学技術大学院大学 ナノマテリアルテクノロジーセンター内 シンポジウム事務局 〒923-1292 石川県能美市旭台1-1 TEL:0761-51-1449 E-mail:arim ARIMシンポジウム担当:東嶺・橋本・麻生・大島・高村 |
| ホームページ | https://www.jaist.ac.jp/project/arim/ |
学生の福田さんがプラスチック成形加工学会第36回年次大会において優秀学生ポスター賞を受賞
学生の福田雄太さん(博士後期課程2年、物質化学フロンティア研究領域、山口政之研究室)が、一般社団法人プラスチック成形加工学会第36回年次大会において、優秀学生ポスター賞を受賞しました。
プラスチック成形加工学会は、プラスチック材料・成形条件・ベストな製品に至る全工程にわたって科学と技術のメスを入れ、プラスチックの新しい可能性を切り開くため、会員相互の情報交換や議論を行う場を提供しています。
同学会第36回年次大会は、『昨日まで見ていた夢、今日の努力に工夫を加え、いつか形を成す』 をスローガンに、令和7年6月18日・19日の2日間、東京都江戸川区のタワーホール船堀にて開催され、成形加工分野の最新技術や研究成果について、活発な議論と情報交換が行われました。
※参考:プラスチック成形加工学会第36回年次大会
■受賞年月日
令和7年6月18日
■研究題目、論文タイトル等
ポリヒドロキシブチレート系共重合体の引張特性
■研究者、著者
*福⽥雄太、Janchai Khunanya、砂川武宜(株式会社カネカ)、⼭⼝政之
■受賞対象となった研究の内容
バイオマスから製造されると共に海洋分解性を示すプラスチックであるポリヒドロキシブチレート系共重合体の力学特性に関する研究内容である。この材料から得られるフィルムは、石油由来の結晶性高分子と同様の力学的性質を示す。そのため既存の石油系プラスチックからの代替が進んでいる。本研究では、一度、変形を与えた後は架橋ゴムのような力学特性を示すことを明らかにした。今後、包装用材料などへの利用が期待できる技術となる。
■受賞にあたって一言
この度は、プラスチック成形加工学会第36回年次大会におきまして、このような賞をいただけたことを大変光栄に思います。本研究の遂行にあたり、日頃よりご指導をいただいている山口政之教授、研究室の皆さんにこの場をお借りして心より御礼を申し上げます。今後もよりいっそう研究活動に邁進していきたいと思います。
令和7年7月10日
出典:JAIST 受賞https://www.jaist.ac.jp/whatsnew/award/2025/07/10-1.htmlナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発 ― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―
ナノ粒子の三次元結晶構造を明らかにする格子相関解析を開発
― 欠陥を多く含むメタチタン酸ナノ粒子の構造決定に成功 ―
【ポイント】
- 高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発
- 欠陥を多く含むメタチタン酸ナノ粒子の三次元結晶構造の決定に成功
- 多様な結晶構造をとり得る金属オキシ水酸化物ナノ粒子の構造解明に役立つと期待
| 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市) ナノマテリアル・デバイス研究領域の麻生浩平講師、大島義文教授、宮田全展講師 (研究当時)、同大学ナノマテリアルテクノロジーセンターの東嶺孝一技術専門員、日本製鉄株式会社 技術開発本部の神尾浩史主幹研究員らの研究グループは、高分解能透過電子顕微鏡法とデータ科学手法を組み合わせた格子相関解析を開発しました。これにより、従来のX線回折法(XRD)*1などでは困難だった、欠陥を多く含むメタチタン酸ナノ粒子の結晶構造を決定することに成功しました。メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました。酸素と金属で構成される金属酸化物や、さらに水素が加わった金属オキシ水酸化物は、多様な結晶構造をとり、それに応じて多彩な物性を発現することが知られています。格子相関解析は、このような材料の構造解明に弾みをつける新たな手法であり、多彩な物性の理解に貢献すると期待されます。 本研究成果は、2025年4月28日 (英国標準時間)に科学雑誌「Communications Chemistry」誌のオンライン版で公開されました。 |
【研究の背景及び概要】
酸素と金属で構成される金属酸化物ナノ粒子や、水素が加わった金属オキシ水酸化物ナノ粒子は、現代社会に欠かせない触媒、エネルギー変換、吸着材として注目されています。これらのナノ粒子は、組成が同じでも異なる構造をとり、異なる物性を示します。つまり、物性を真に理解する上で、合成されたナノ粒子の形状や構造の解明は欠かせません。典型的な構造解析として、X線回折法やラマン分光法*2があります。しかし、サイズが数ナノメートル (nm, 十億分の一メートル) 程度のナノ粒子の場合、ピークが明瞭でないため解析が困難です。また、今回の研究対象とした、金属オキシ水酸化物のひとつであるメタチタン酸は、欠陥を多く含むため構造解析がより困難となっていました。一方、透過電子顕微鏡 (TEM)*3や走査TEM (STEM)*4は、原子配列を可視化できますが、得られる情報は投影した二次元像です。
そこで、三次元の結晶構造を明らかにするため、多数のメタチタン酸ナノ粒子のTEM像を異なる様々な方位から取得しました。様々な方位から多数の像を得るのは、生物分野で利用される単粒子解析と類似していますが、本研究では異なる解析手法を採用しています。単粒子解析では、対象物の形状が均一であると仮定し、多数の像を観察方位ごとに分類して足し合わせることで、像の質を高めます。しかし、メタチタン酸ナノ粒子の場合、形状が均一ではないため、従来の方法をそのまま応用することはできませんでした。そこで、今回開発した手法では、像の足し合わせではなく、周期性や格子定数に敏感な結晶格子の間隔や異なる格子間の角度に着目しました。本手法は、間隔や角度の相関を統計的に解析することで、結晶構造の特徴を抽出しようとした点に新規性があります。
メタチタン酸ナノ粒子は、TEM試料用の支持膜上にランダムな方位を向いて分散するので、様々な方位からの粒子の原子分解能TEM像が得られます (図1a)。得られたTEM像から、画像処理によって個々のナノ粒子を検出し (図1b)、そのナノ粒子にガウス関数のマスクをかけて高速フーリエ変換 (FFT) パターンを得ました(図1c)。FFTパターンで観察されるスポットは、ナノ粒子の結晶格子の周期を反映します。異なるスポットの配置から、格子の間隔や角度の相関 (格子相関) が分かります。この処理を、500枚のTEM像で撮影された1300個のナノ粒子に対して行うことで、メタチタン酸ナノ粒子がもつ特徴的な格子相関を統計的に得ることが出来ました (図1d)。異なる観察方位に対する格子相関を組み合わせて解析することで、構造に関する三次元情報が得られます。
解析の結果、メタチタン酸ナノ粒子は、アナターゼ型酸化チタン(TiO2)構造を基本骨格とするものの、TiO2層とTi(OH)4層が交互に積層した構造であることを明らかにしました(図1e)。この構造は、密度汎関数理論による計算*5でも安定であることが確認されました(図1f)。また、原子の個数や原子番号をより直接的に反映する環状暗視野STEM像*6(図1g)とも整合しており、提案する構造は妥当であると判断しました。
本研究で開発した格子相関解析は、従来と比べて1/20から1/500程度の低い電子線照射量で、三次元的な結晶構造の解明を可能とします。今後は、電子線に敏感なため解析が困難だった、金属オキシ水酸化物ナノ粒子や有機物を含むナノ材料への展開が期待されます。新規材料探索は理論計算による研究が多いなかで、本手法は解析の自動化が可能であり、実験による新たなアプローチを提示できると考えています。これにより、より適切な材料設計や高性能デバイスの開発に弾みがつくと期待されます。

| 図1 (a) HRTEM像。暗いコントラストで示されるメタチタン酸ナノ粒子が見られる。(b) 画像処理によって粒子領域を検出した図。粒子ごとに色分けして塗りつぶしている。(c) b中の中央下、白い丸とバツでマークされた粒子のFFT図形。(d)格子相関マップの一例。ここでは(004)面と(110)面、(002)面と(110)面の組み合わせがスポットとして現れている。(e)解析から提案された結晶模型。(f)結晶模型について計算した環状暗視野STEM像。(g)メタチタン酸ナノ粒子の環状暗視野STEM像。 |
【論文情報】
| 雑誌名 | Communications Chemistry |
| 論文名 | Three-dimensional atomic-scale characterization of titanium oxyhydroxide nanoparticles by data-driven lattice correlation analysis |
| 著者 | Kohei Aso, Koichi Higashimine, Masanobu Miyata,Hiroshi Kamio,and Yoshifumi Oshima |
| 掲載日 | 2025年4月28日 |
| DOI | doi.org/10.1038/s42004-025-01513-2 |
【用語説明】
物質の平均的な結晶構造を調べる代表的な技術。X線を試料に照射してプロファイルを取得し、回折ピークの配置を解析することで試料の平均的な結晶構造が得られる。
物質にレーザー光を照射し、散乱された光の波長変化(ラマン散乱)を解析することで、物質の化学結合や結晶構造を得る手法。
電子線を試料に透過させ、得られた投影像から結晶構造を観察する手法。電子線を使うことを除いて、原理的には一般的な光学顕微鏡と同様。
0.1 nm程度に絞った電子線を試料上で走査し、試料各点からの信号によって結像する手法。
原子や分子の電子状態を理論に基づき計算する手法。ここでは、結晶構造のサイズ(格子定数)や原子位置をわずかに変化させながら計算を繰り返し、構造の安定性を評価した。
STEMのうち、前方散乱された電子をマッピングした像。原子番号や厚みの違いをより直接的に反映した像が得られる。
令和7年4月30日
出典:JAIST プレスリリース https://www.jaist.ac.jp/whatsnew/press/2025/04/30-1.html





