The separation block determines Ak(t), Bk(t),
,
and
from Sk(t) and
using constraints (ii) and (iv) in the determined concurrent time-frequency region.
In this paper, the improvement of the auditory sound segregation model is to reconsider the constraints on the continuity of
as well as the constraints on the continuity of Ak(t) and F0(t).
Constraint (ii) is implemented such that
Ck,R(t) and
Dk,R(t) are linear (R=1) polynomials, in order to reduce the computational cost of estimating
Ck,R(t) and
Dk,R(t).
In this assumption, Ak(t) and
,
which can be allowed to undergo a temporal change in region, constrain the second-order polynomials (
and
).
Then, substituting
dAk(t)/dt=Ck,R(t) into Eq. (), we get the linear differential equation of the input phase difference
.
By solving this equation, a general solution is determined by
The signal flow of the separation block is shown in Fig. .
In the segment
Th-Th-1 that can be determined by
E0,R(t)=0, the terms Ak(t), Bk(t),
,
and
are determined by the following steps.
First, the estimation regions,
and
,
are determined by using the Kalman filter,
where
and
are the estimated values and Pk(t) and Qk(t) are the estimated errors (see Appendix A).
Next, the candidates of
Ck,1(t) at any
Dk,1(t) are selected by using the spline interpolation in the estimated error region (see Appendix B).
Then,
is determined by using
(16) |