QOMET User’s Guide

by Razvan Beuran

June 2013

Hokuriku StarBED Technology Center
National Institute of Information and Communications Technology
1-12 Asahidai, Nomi, Ishikawa, 923-1211 Japan
http:/ /www.nict.go.jp

QOMET User’s Guide

Copyright (© 2006-2013 The StarBED Project
All rights reserved.

Contents

Preface v
1 Introduction 1
1.1 OVerview o e e e e e e 1
1.1.1 Features e 2

1.1.2 Implementation 3

1.2 Documentstructure 4
1.3 Acknowledgment o oo oL 4
1.4 Contactinformation 4
2 Scenario representation 5
2.1 gomet_scenarioelement. 5
211 Attributes 5

212 Example 6

22 nodeelement 6
221 Attributes 7

222 Example 7

2.3 interfaceelement 8
231 Attributes oo 8

232 Examples o o 10

24 objectelement. 10
241 Attributes 10

242 Examples o 12

2.5 coordinateelement 12
251 Attributes 12

252 Example o 13

26 environmentelement., 13
2.6.1 Attributes 13

262 Examples oo 14

2.7 motionelement. 14
2.71 Attributes 15

272 Examples o 17

2.8 connectionelement 17

iii

iv

CONTENTS

281 Attributes 17
282 Example o 20
29 fixed.deltaQelement 20
291 Attributes 20
292 Example 21
210 Remarks e 21
Utilization 23
3.1 OVervIew e e 23
3.2 Offline processing 24
321 Commandexecution 24
322 Outputfiles 25
3.3 Effectiveemulation 26
331 Commandexecution 27
332 UsingSpringOS 27
34 Usageexample 28
341 QOMET scenario v v v v i it et e e e 29
3.42 Scenarioprocessing. 30
343 SpringOSscript L oo 32
3.44 Filedistribution 32
3.45 Experimentexecution 33
Software components 37
41 Network emulation library: deltaQ 37
4.2 Link-level emulator configuration library: wireconf 38
43 Time measurement library: timer 38
44 Othertools e 39
441 Scenariogenerator 39
442 Testsuite 39
4.5 Software distribution 40

Bibliography 41

Preface

Wireless network experiments have always presented challenges for researchers,
which lead to the fact that real-world trials were replaced almost completely by
simulation experiments. While there is a recent tendency to lay again emphasis on
real-world trials, the predominance of simulation results in scientific papers is still
obvious.

Our work has started in 2006 as an attempt to provide researchers with another
practical approach for performing experiments, that trades off the advantages and
disadvantages of real-world trials and simulation experiments. This alternative
approach is that of network emulation.

QOMET is a set of tools for network emulation that makes it possible to run
a wide range of realistic network experiments in controlled conditions. QOMET
development started with focus on wireless networks, since that field has been
considered as the one that would most benefit from employing network emulation.
Many features were added over time, including support for wired networks and
node mobility. QOMET development is still ongoing.

While the QOMET design, modeling, and software development were mainly
done by the members of the StarBED Project, we could have not achieved the cur-
rent state without all the users that contribute continuously to the improvement of
QOMET through their feedback and suggestions. Many thanks to all of them.

R. Beuran

Vi

PREFACE

1 Introduction

This is the user’s guide for QOMET, the set of tools for network emulation de-
veloped at the Hokuriku StarBED Technology Center! of the National Institute
of Information and Communications Technology in Japan. The QOMET acronym
stands for “Quality Observation and Mobility Experiment Tools” as an indication
of the wide range of possible uses of these tools for network application and proto-
col evaluation in scenarios including mobility.

This user’s guide refers to QOMET v2.1 that was released in June 2013. The
release contains several new features with respect to the previous version, the most
important of them being the addition of support for the WiMAX PHY computation.
We plan to follow on this in 2014 with a release that will also contain the WiIMAX
MAC support, so as to make WiMAX emulation possible.

Other improvements in QOMET v2.1 include: the addition of fading model
(AWGN and Rayleigh) for communication environments, better support for JPGIS
map data, and the possibility to define communication disruptions by means of
electromagnetic noise injection. The library for access point operation emulation,
called station, was somewhat improved but is still under development. For de-
tailed information referring to the development of QOMET v2.1 please consult the
files HISTORY and CHANGES included in the distribution.

1.1 Overview

QOMET is based on our two-stage approach to wireless network emulation [3, 4, 5]
which is represented in Figure 1.1.

In the first stage, a scenario representation is converted into a sequence of qual-
ity degradation (A(Q) states of the network, termed AQ description. This conversion
is done in a layer-oriented manner, as we compute first the physical layer effects
that the changes in the communication channel have on the received signal power.

10ur center was named “Hokuriku Research Center” until April 2011.

1

2 1. INTRODUCTION

Scenario AQ Network
representation description configuration

Figure 1.1: Two-stage scenario-driven network emulation.

For WLAN:S, this is followed by an estimation of the frame error rate (FER) based
on the received signal power and the noise power, and by taking into account the
specificities of the 802.11 MAC layer. Finally, the network layer conditions are de-
termined: packet loss, delay & jitter, and available bandwidth. Similar techniques
are used for the other supported network technologies.

In the second stage, the AQ description, which accurately reproduces the wire-
less network behavior corresponding to the emulated scenario, is used to configure
a link-level network emulator, such as dummynet [14], to recreate this behavior in
a wired network.

We have performed several experiments using QOMET, with network setups
ranging between a few and over one hundred PCs, each emulating one or multi-
ple network nodes. Experimentation was mainly done on StarBED, the large-scale
network experiment environment managed by our center [13]. The wireless net-
work emulation testbed called QOMB (QOMet on starBed) integrates QOMET with
StarBED so as to facilitate making large-scale experiments [6, 7].

1.1.1 Features

Initially focusing on IEEE 802.11a/b/g (WLAN) emulation, QOMET is being con-
tinually developed and improved by adding new features. In addition to WLAN,
QOMET provides now support for other wireless network technologies, such as
IEEE 802.15.4, for realistic 3D virtual environments, for node mobility generation,
etc.

In order to make it possible to run network emulation experiments that, in ad-
dition to wireless networks, also involve wired networks (such as the network to
which an access point is connected), we have added basic emulation capabilities for
Ethernet networks operating at 10/100/1000 Mb/s. However, QOMET remains fo-
cused on the challenging area of wireless networks, including mobility scenarios.

A summary of the most important features of QOMET v2.1 is presented in Table
1.1. In addition to them, some new features are still under development. Such
features are support for IEEE 802.16e WIMAX/LTE emulation, support for access
point operation emulation, and support for execution on FreeBSD 8.2 operating
system. It is expected that these features will be introduced in the next QOMET
release.

1.1. OVERVIEW 3

Table 1.1: Summary of current QOMET features.

| Category Supported features

IEEE 802.11a/b/g (WLAN)

Active RFID tag communication

IEEE 802.15.4 (basis for ZigBee)

IEEE 802.3 (Ethernet) at 10/100/1000 Mb/s

2D objects (including based on real map data)
3D objects (2D contour + height information)
Linear

Circular

Mobility Rotation

Random walk

Behavioral motion

Operating systems Red Hat Enterprise Linux 6 and derivatives,
such as Scientific Linux or CentOS

Antennas (both 2D and 3D, omnidirectional
and directional)

Support for OLSR routing

Network technologies

Topography

Other features

1.1.2 Implementation

The QOMET software described in this user’s guide implements first of all the con-
version of the real-world wireless network scenario into the corresponding A() de-
scription that characterizes the changing network states, as mentioned above. This
function is achieved by means of the component called deltaQ.

The scenario representation used as input for de1taQ is written in XML format.
It must include all the components of the scenario, such as nodes and objects, and
their properties, including connectivity, mobility, etc. The deltaQ text output is
a file that contains for each moment of time the most important A() parameters:
bandwidth, packet loss, and delay & jitter. Other parameters are included as well,
e.g., the distance between nodes, the received power in dBm, etc. An equivalent
output in binary format is also generated, providing a more compact representation
for experiment purposes.

The output of QOMET is intended for driving a link-level network emulator to
recreate the computed quality degradation in a real wired-network environment.
QOMET supports this functionality by means of the component called wireconf.
Starting with QOMET v2.x releases, this module drives the ipfw3 portable imple-
mentation of dummynet, and can be used on modern Linux OSes.

Although our software implementation is mainly intended for being used as
a stand-alone framework, most of the components, such as the wireless network

4 1. INTRODUCTION

communication emulation core, can also be used as libraries, and linked to other
programs. This makes it possible for users to tightly integrate our network emu-
lation code with their own custom programs, for instance related to node motion
generation. More details about this possibility are presented in Chapter 4.

1.2 Document structure

This user’s guide is structured as follows. In Chapter 2 we give the reference of the
XML-based QOMET scenario representation. In Chapter 3 we present the practical
use of QOMET, including instructions on how to conduct experiments. Chapter 4
provides an overview of the software components of QOMET, such as the wireless
network communication emulation library, and the other libraries included with
QOMET. The document ends with a section of references.

1.3 Acknowledgment

We would like to acknowledge the contribution to the development and testing of
the QOMET software, and the improvement of the current user’s guide of (in al-
phabetical order): Kunio Akashi, Khin Thida Latt, Junya Nakata, Lan Tien Nguyen,
Trung Tran Nguyen, and Takashi Okada.

1.4 Contact information

In case you want to make any suggestions, either about the present user’s guide,
or about QOMET itself, please send your comments or bug reports to the following
e-mail address: info@starbed.org.

2 Scenario representation

This chapter describes the syntax of the scenario representation file used as QOMET
input which is written using the XML format [1]. For parsing the scenario file we
use the eXpat XML parser library [9]. The scenario representation is composed
of a top-level element, gomet_scenario, and several second-level elements, rep-
resenting nodes, objects, environments, motion elements, and connections. Third-
level elements are used to represent lower-level details, such as interface properties
for nodes, and object coordinates.

2.1 gomet _scenario element

The top-level element in the QOMET scenario representation file is gomet _scenario.
All the other elements must be included in this top-level element. The gomet_scenario
element provides basic configuration options for the overall emulation scenario.

2.1.1 Attributes

The possible attributes of a gomet _scenario element are presented next, together
with their roles, expected data types and values:

start_time Specifies the starting time of scenario execution in seconds.

e Data type: double

e Value: any value (default =0s)
duration Specifies the duration of scenario execution in seconds.

e Data type: positive double

e Value: any value (default =0s)

6 2. SCENARIO REPRESENTATION

step Specifies the time interval at which AQ calculation of scenario properties is
performed, in seconds'.
e Data type: positive double
e Value: any value (default = 0.5 s)
motion_step._divider Divider that should be applied to the AQ calculation step
parameter for the case of motion computation, so that the motion time step
can be sufficiently small to produce correct results in various topographical
scenarios. For instance, assuming that st ep was assigned the value 0.5, then
you need to set motion_step_divider to 2 in order to instruct QOMET to
compute motion with a time step of 0.25 s.
e Data type: positive double
e Value: any value (default = 1.0)

coordinate_system Specifies the coordinate system used in the scenario.

e Data type: string
e Value: { cartesian| lat_lon.alt } (default=cartesian)
jpgis_file name Specifies the name of the JPGIS? formatted file from which ob-
ject coordinates are to be loaded; UTF-8 encoding is required. See also Section
2.4 for details on how to specify objects.
e Data type: string

e Value: any value (no default value)

2.1.2 Example

Below is an example of a scenario starting at time 0 s, with a duration of 60 s,
that will be calculated with a step of 0.5 s. Element definitions are not specified in
this example; please consult the following sections for details on defining scenario
components.

<gomet_scenario start_time="0" duration="60" step="0.5">

</qgomet_scenario>

2.2 node element

The node element defines the properties of the emulated devices, that we call
“nodes”.

"This step is also used by de1taQ as the time granularity of the generated output.
*JPGIS is a GIS (Geographic Information System) data representation format widely used in Japan.

2.2. NODE ELEMENT 7

2.2.1 Attributes

The possible attributes of a node element, their roles and expected data types and
values are the following;:

name Specifies the name of the node, which is used to refer to that node in other
places in the scenario, such as in motion definitions.

e Data type: string
e Value: any value (no default value)
x,y, z Specify the initial coordinates of the node; the measurement unit depends
on the coordinate system used.
e Data type: double
e Value: any value (default = 0, 0, 0, respectively)
internal_delay Specifies the internal fixed delay in milliseconds reflecting node
operations that are unaccounted for in the communication model.
e Data type: positive double
e Value: any value (default = 0 ms)
Some attributes of the node element, that have been obsoleted and will be dis-

continued in the future, or that are currently not used, were omitted from the syntax
description for clarity purposes. These attributes are:

e type, ssid, connection: The node type, network SSID and connection
type are intended for supporting AP functionality in the future, but are not
currently in use;

e id: The node id, which is used internally by QOMET, is now automatically
generated, and this attribute is currently ignored when parsing a scenario;

e adapterand related attributes, such as Pt: Adapter-related parameters have
been grouped as a separate element called interface. Thus it is recom-
mended that they are set via this element, as indicated in Section 2.3; this
is mandatory for multi-interface nodes, which cannot be defined otherwise.

These attributes are currently maintained as node attributes for back-compatibility

purposes, but will be removed in the future.

2.2.2 Example

Below is an example of a node named “node0” located at the initial position (5, 10, 15).
Other node properties can be specified via the interface element (see Section
2.3).

<node name="node0" x="5" y="10" z="15"/>

8 2. SCENARIO REPRESENTATION

2.3 interface element

The interface element defines the properties of the interfaces of emulated nodes.

2.3.1 Attributes

The possible attributes of a interface element, their roles and expected data
types and values are the following:

name Specifies the name of the interface, which is used subsequently in connection
elements to refer to this interface.

e Data type: string

e Value: any value (default = no value)

adapter Specifies the adapter model which is used for the interface; should be
correlated to the emulated wireless network technology used for connections
from the interface.

e Data type: string

e Value: { orinoco|dei80211lmr | cisco-340 | cisco_abg| jennic
s_node } (default = cisco_abg)

Pt Specifies the power transmitted by the node in dBm.

e Data type: double
e Value: any value (default = 20 dBm)

antenna_gain Specifies the antenna gain of the node transceiver in dBi.

e Data type: positive double
e Value: any value (default = 0.0 dBi)

azimuth orientation Specifies antenna orientation in the azimuth (horizontal)
plane, in degrees.

e Data type: double in the range [0°, 360°)

e Value: any value (default = 0°)

azimuth beamwidth Specifies antenna beamwidth in the azimuth (horizontal)

plane, in degrees®.

e Data type: double in the range [0°, 360°]

3 Antenna beamwidth is the angle made by the directions on which power attenuation equals 3 dB
(i.e., power is halved), and centered on the the maximum power direction.

2.3. INTERFACE ELEMENT 9

e Value: any value (default = 360°, signifying an omni-directional antenna
in azimuth plane)

elevation.orientation Specifies antenna orientation in elevation (vertical) plane
in degrees.
e Data type: double in the range [0°, 360°)
e Value: any value (default = 0°)
elevationbeamwidth Specifies antenna beamwidth in elevation (vertical) plane
in degrees.
e Data type: double in the range [0°, 360°]
e Value: any value (default = 360°, signifying an omni-directional antenna

in elevation plane)

ip_address Specifies the IP address that will be assigned to this interface dur-
ing the experiment. Note that this information is only used to generate the
settings file that is used by wireconf, and not to effectively configure an IP
address to the emulated node, an action that has to be done by the user.

e Data type: string
e Value: any value* (default = no value)

noise_source Flag that specifies the current interface is actually a noise source,

and its signal will be treated as interference to other nodes. In this case Pt

indicates the signal strength of the noise source®.

e Data type: string
e Value: { true | false } (default= false)
noise_start_time, noise_end _time Specify the beginning and the end time
in seconds of the interval in which the noise source is active. To define multi-
ple intervals you need to create multiple noise sources that are each active in
one of the desired intervals.
e Data type: double

e Value: any value

*The assigned valued should represent a valid IPv4 address, although this is not currently checked
in QOMET.

°The frequency band of the noise source cannot be specified at this moment, and it is assumed to
be the same with those of the operating nodes.

10 2. SCENARIO REPRESENTATION

2.3.2 Examples

Below is an example of a node named “node0” that has two network interfaces;
other properties of the node, such as its position are not specified here. The first
interface is named “if0”, uses an “orinoco” adapter, and is associated with the
IP address “192.168.1.1”. The second interface is named “if1”, uses a “cisco_abg”
adapter, and is associated with the IP address “192.168.2.1”.

<node name="nodeO" ... >
<interface name="if0" adapter="orinoco" ip_address="192.168.1.1"/>
<interface name="ifl" adapter="cisco_abg" ip_address="192.168.2.1"/>
</node>

The next example defines the interface “if0” of the node “node0” as a noise
source with P; equal 20 dBm. The noise source is active in the interval 10 to 20 s.

<node name="nodeO" ... >
<interface name="if0" adapter="orinoco" Pt="20"
noise_source="true" noise_start_time="10" noise_end_time="20"/>
</node>

2.4 object element

The object elements represent structures, such as roads, buildings, or any other
obstacles, such as hedges. Such objects may interfere with the wireless communica-
tion between nodes, therefore must be taken into account. The height of the object
is important in this respect, since only objects that are high enough to obstruct
communication are taken into account. Some objects, such as the roads (which are
considered to have no height) have no effect on communication. Nevertheless, they
can be used to restrict node motion within the designated road boundaries. In ad-
dition, motion computation can takes into account non-zero height objects as well,
such as buildings, which are avoided by pedestrians. Note that the exact influence
of objects on motion depends on the select motion model, and currently only the
behavioral model considers objects during motion computation.

2.4.1 Attributes

The possible attributes of an object element are presented next, together with
their roles, expected data types and values:

name Optionally specifies the name of the object, and is typically used to convey
more information about the object, such as its role in the scenario.

e Data type: string
e Value: any value (default = UNKNOWN)

type Specifies the type of the object. This information is used by QOMET when
loading JPGIS data to determine the type of data that must be read.

2.4. OBJECT ELEMENT 11

e Data type: string
e Value: { building| road } (default=building)
environment Specifies the name of the environment associated to this object; the
respective environment cannot be dynamic (see Section 2.6).
e Data type: string
e Value: any value (no default value)
x1,y1,x2,y2 Specify the coordinates of a rectangular object; the measurement
unit depends on the coordinate system used.
e Data type: double
e Value: any value (no default value)
height Specifies the height of an object in meters. This attribute only has to be
specified when the user wishes the scenario to be processed in 3D. The height
is usually zero for objects such as roads, and non-zero for buildings or other
obstacles interfere with signal propagation.
e Data type: positive double
e Value: any value (default = 0 m)
load from_ jpgis_file Specifies that the object coordinates should be loaded
from the JPGIS-format file specified by the scenario attribute jpgis_file_name.
e Data type: string
e Value: { true | false } (default = false)
make_polygon Specifies that the current object should be made into a polygon by
automatically connecting its last and first vertexes.
e Data type: string;
e Value: { true | false } (default= false)
load. all_from region Specifies that all the objects in the region indicated by
x1,y1, x2, y2 should be loaded from the JPGIS-format file specified by the
scenario attribute jpgis_file_name.
e Data type: string
e Value: { true | false } (default = false)

Currently all 2D objects must be given to QOMET as polygons. This can be
done easily by using the make_polygon attribute mentioned above. Alternatively,
the last vertex coordinate can be the same with that of the first vertex. This mimics
the convention used to represent polygons in JPGIS-format topology descriptions.

12 2. SCENARIO REPRESENTATION

2.4.2 Examples

Below is an example of an object named “building” associated to an environment
called “building_env” (not defined here). The object contour is a rectangle defined
by the coordinates (—10, —10) and (10, 10).

<object name="building" environment="building_env"
x1="-10" yl="*10" x2="10" y2="10"/>

The next example defines a set of objects whose name will be auto-generated
starting from the base name “Roads”. The objects will be created by loading all
the objects of type “road” in the JPGIS file associated to the scenario that are fully
contained within the region defined by the points (x1, y1) and (x2, y2) specified
in latitude-longitude coordinates.

<object name="Roads" type="road" environment="env" height="0"
load_from_jpgis_file="true" load_all_from_region="true"
x1="35.540" y1="139.685" x2="35.550" y2="139.695" make_polygon="false"/>

2.5 coordinate element

The coordinate element represents coordinates of points, such as object vertexes.
This element is currently used only to represent the 2D coordinates of a building or
road contour, for example as it could be seen on a map. The object attribute height
can be used to construct a 3D object.

2.5.1 Attributes

The possible attributes of a coordinate element are presented next, together with
their roles, expected data types and values:

name Optionally specifies the name of the coordinate, for instance in order to con-
vey more information about the coordinate, such as its index.

e Data type: string
e Value: any value (default = UNKNOWN)

The actual value of the coordinate is given by pairs of floating-point numbers
enclosed between the start and end tags of the coordinate element. These numbers
can represent either Cartesian or latitude & longitude coordinates, depending on
the value of the coordinate_system attribute of the top-level gomet_scenario
element (see Section 2.1). In order to associate some coordinates to a certain object,
the corresponding coordinate element definitions must be included between the
start and end tags of that object element.

2.6. ENVIRONMENT ELEMENT 13

2.5.2 Example

The example below shows the definition of an object element representing a trian-
gle with coordinates (0.0,0.0), (0.0,10.0), and (10.0, 0.0). The attributes of the object
are not included in this example. Note that the last coordinate is repeated to form a
polygon. The object attribute make_polygon could have been set to t rue instead.

<object ... >
<coordinate> 0.0 0.0 </coordinate>
<coordinate> 0.0 10.0 </coordinate>
<coordinate> 10.0 0.0 </coordinate>
<coordinate> 0.0 0.0 </coordinate>
</object>

2.6 environment element

The environment element describes a communication channel (environment) through
which nodes can communicate using radio signals. In order to associate an envi-
ronment with two nodes, the connect ion element must be used (see Section 2.8).

2.6.1 Attributes

The possible attributes of an environment element are presented next, together
with their roles, expected data types and values:

name Specifies the name of the environment, which is used to refer to this element
later in the scenario, for instance in object definitions.
e Data type: string
e Value: any value (no default value)
is_dynamic Specifies whether the environment is dynamic (i.e., its properties will
be computed at each step depending on scenario topology) or static (i.e., its
properties will never change).
e Data type: string
e Value: { true | false } (default= false)
alpha, sigma, W Specify the parameters « (attenuation constant), o (shadowing
parameter) and W (wall attenuation) of the log-distance path loss propaga-
tion model; « is unit-less, and o and W are both expressed in dB — see [4] for
details.
e Data type: positive double
e Value: any value (default = 0, 0 dB, 0 dB, respectively)

14 2. SCENARIO REPRESENTATION

noise_power Specifies the power of the noise in dBm, as it would be sensed by a
receiver located in this environment. This models uniform noise floors, as if
coming from an infinitely-remote noise source.

e Data type: double
e Value: any value (default = -100 dBm, representing the thermal noise
level for 802.11b/g operating frequencies)

fading Specifies which type of fading should be used for the environment.

e Data type: string
e Value: { AWGN® | Rayleigh } (default = AWGN)

The following environment attributes are not currently used, and may be re-
moved in the future:

e type: Intended for specifying the type of the environment, such as indoor or
outdoor.

2.6.2 Examples

Below is an example of an environment named “env”, with values for the param-
eters o, o and W being 5.5, 1 dB and 0 dB, respectively. The noise power for this
environment is -100 dBm.

<environment name="env" alpha="5.5" sigma="1" W="0" noise_power="-100"/>

The next example defines an environment called “env_R” which is identical
with the previous one except for the fact that the “Rayleigh” fading model will
be used for propagation calculation instead of AWGN:

<environment name="env_R" alpha="5.5" sigma="1" W="0" noise_power="-100"
fading="Rayleigh"/>

2.7 motion element

The mot ion element describes the motion pattern of a node. Note that, except for
the behavioral motion in which objects are avoided, other motion types do not take
into account objects, and node trajectory follows strictly the defined parameters in
those cases.

¢ Additive White Gaussian Noise.

2.7. MOTION ELEMENT 15

2.7.1 Attributes

The possible attributes of a mot ion element, their roles, expected data types and
values are:

node_name Specifies the name of the node to which the current motion should be
applied.
e Data type: string

e Value: any value (no default value)
type Specifies the type of the motion.

e Data type: string
e Value: { linear |circular|rotation|randomwalk |

behavioral | qualnet } (default= linear)

speed x, speed_y, speed_z Specify for linear motion the speed on the 0z, Oy,
and 0z axes, in meters per second.
e Data type: double
e Value: any value (no default value)
center x, center_y Specify for circular motion the center in a horizontal plane
with respect to which the motion is to be performed. The measurement unit
depends on the coordinate system used.
e Data type: positive double
e Value: any value (no default value)
velocity Specify for circular motion the tangential velocity in the horizontal
plane in meters per second. Positive velocity values signify anti-clockwise
rotation, whereas negative values indicate clockwise rotation.
e Data type: double
e Value: any value (default = 0m/s)
rotation angle horizontal, rotation angle_vertical Specify for rotation
motion the rotation angles in horizontal and vertical plane, respectively, in
degrees.
e Data type: double in the range [0°, 360°)
e Value: any value (default = 0°)

min_speed, max_speed Specify for random walk motion the minimum and max-
imum movement speeds, in meters per second.

16 2. SCENARIO REPRESENTATION

e Data type: positive double
e Value: any values, with max_speed > min_speed (default =0 m/s, and
1 m/s, respectively)

walk_time Specifies for random walk motion the walking time in seconds.

e Data type: positive double
e Value: any value (default =5 s)
destination x,destination.y, destination_z Specify the motion destina-
tion, and let QOMET compute the needed speed to reach that destination in

the allocated time. These parameters can only be given for the linear and be-
havioral models. Measurement units depend on the coordinate system used.

e Data type: double
e Value: any value (no default value)
mobility file name Specifies the name of the file from which mobility data
generated by an external tool should be loaded. The data must be stored
in the QualNet format, and the type of the motion should be set to qualnet.
e Data type: string
e Value: { linear |circular|rotation|randomwalk |
behavioral | qualnet } (default= linear)

start_time, stop_time Specify the motion start and stop time in seconds.

e Data type: double

e Value: any value (default =0 s, and 0 s, respectively)

The following should be considered when defining random walk motion. This
motion type uses the parameters min_speed and max_speed to define the range
of the randomly generated speed in this motion model. The moving direction is
also randomly generated. The parameter walk_t ime specifies how long the node
moves before changing both speed and moving direction.

The QualNet mobility format supported by QOMET specifies motion data in
plain-text format, with each line having the following content:

NODE_ID TIME (X, Y, Z) AZIMUTH ELEVATION
where the meaning of each field is as follows:

e NODE_ID: The id of the node to which the entry should be applied (when
used with QOMET, the id in the QualNet mobility file should match the auto-
generated id for the node to which the mobility data is to be associated);

e TIME: The time in s for which the entry should be used;

2.8. CONNECTION ELEMENT 17

e X, Y, Zz:Thecoordinates of the node at the specified moment of time, either
as (z,y, z) values or as latitude /longitude/altitude values;

e AZIMUTH, ELEVATION:Optional parameters specifying the azimuth and el-
evation of the mobile node (default values are) for both parameters).

2.7.2 Examples

Below is an example of a motion to be applied to the node “node0”. The motion is
a linear displacement with speed (0.5,0.0,0.0). The start time is 0 s, and the stop
time is 30 s.

<motion node_name="node0" type="linear"
speed_x="0.5" speed_y="0.0" speed_z="0.0" start_time="0" stop_time="30"/>

The next example specifies that the mobility trace for the node “nodel” should
be loaded from the file “qualnet.mobility”. The values from the trace with time
values between 0 and 60 s will be used.

<motion node_name="nodel" type="qualnet" mobility_file_name="qualnet.mobility"
start_time="0" stop_time="60"/>

2.8 connection element

The connection element describes the connection between two nodes by means
of a communication channel (environment). Connections are important elements
in a scenario representation, since the A description is only computed for those
nodes appearing in connection fields.

2.8.1 Attributes

The possible attributes of a connect ion element are presented next, together with
their roles, expected data types and values:

from node Specifies the name of the transmitting node.

e Data type: string

e Value: any value (no default value)

tonode Specifies the name(s) of the receiving node(s); multiple names should be
separated by a space character.

e Data type: string

e Value: any value (no default value). The auto_connect value has a

special meaning, as it instructs QOMET to connect the corresponding

from_node to all the nodes that were defined before this connection”.

7If such a connection has a dynamic environment, then all the necessary environments needed for
the automatically-generated connections will be created as well.

18 2. SCENARIO REPRESENTATION

through_environment Specifies the name of the environment through which
the nodes communicate.

e Data type: string

e Value: any value (no default value)

standard Specifies the wired or wireless network technology used by this con-
nection.

e Data type: string

e Value: {802.11a|802.11b|802.11g|eth.10|eth-100|eth-1000
| active_tag| zigbee } (default=802.11Db)

rate Specifies whether the wireless network operating rate is adaptive or fixed.
For the adaptive case, the Auto Rate Fallback (ARF) algorithm is used [11].

e Data type: string

e Value: { adaptive | 1Mbps | 2Mbps | 5.5Mbps | 11Mbps | 6Mbps |
9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps }
(default = adaptive);

channel Specifies the channel on which the transceiver operates (if applicable, i.e.
only for wireless technologies that use multiple channels).

e Data type: positive integer (including zero)

e Value: any value between 0 and 200 (default = 1 for 802.11b/g, 36 for
802.11a, and 11 for 802.15.4, respectively)

RTS_CTS_threshold Specifies the packet size above which the RTS/CTS mecha-
nism in IEEE 802.11 standard is enabled (if applicable).

e Data type: positive integer

e Value: any value between 0 and 2347 (default = 2347, which completely
disables the RTS/CTS mechanism)

packet_size Specifies the average packet size in bytes at network layer that is
transmitted through this connection. For IEEE 802.11a/b/g emulation, the
actual average packet size will be computed dynamically during the experi-
ment, and the value specified here is used only for the initial offline calcula-
tions.

e Data type: positive integer
e Value: any value (default = 1024 bytes)
bandwidth Specifies the average bandwidth for this connection in bits per sec-

ond. This is a way for users to control precisely the emulated bandwidth if
they desire to do so.

2.8. CONNECTION ELEMENT 19

e Data type: positive double
e Value: less or equal 1,000,000,000 bps (default = automatically computed)

loss_rate Specifies the average packet loss rate of this connection as a probabil-
ity. This is a mechanism for users to control precisely the emulated loss rate
if they desire to do so.

e Data type: positive double

e Value: less or equal 1 (default = automatically computed)

delay, jitter Specify the average delay and jitter of this connection in millisec-
onds. This represents a way for users to control precisely the emulated delay
and jitter if they desire to do so.

e Data type: positive double
e Value: any value (default = automatically computed)

consider_interference Specifies whether interference between nodes is to be
taken into account when computing offline the communication conditions for
802.11a/b/g emulated network. We stress that this parameter only refers
to the offline computation, as a way to estimate worst-case conditions, but
interference and contention are accounted for anyway dynamically during
experiment execution.

e Data type: string;
e Value: { true | false } (default = true)

The following should be considered when defining connections:

e The auto_connect option of connections only generates connections to the
nodes that were defined before that connection definition, and ignores the
nodes that will be defined after it in the scenario representation.

e If a parameter such as bandwidth, loss_rate or delay are statically speci-
fied for a connection, then the corresponding constant values will be used for
the entire duration of the experiment instead of the values that are computed
by QOMET. This is particularly useful for defining the conditions of Ether-
net connections, or to control the emulated network conditions for various
experiment purposes. When one desires to have varying conditions during
an experiment, the alternative fixed_deltaQ element should be used (see
Section 2.9).

e Typical settings for IEEE 802.11a/b/g channels in Japan are between 1 and 13
for 802.11b/g, and within the set of values {36, 40, 44, 48, 52, 56, 60, 64} for
802.11a.

e Typical channel settings for IEEE 802.15.4 are between 11 and 26.

20 2. SCENARIO REPRESENTATION

2.8.2 Example

Below is an example of a connection from node “node0” to the nodes “nodel” and
“node2” through the environment named “env0”. The wireless network standard
used is 802.11g, and the estimated average packet size is 200 bytes:

<connection from_node="nodeO" to_node="nodel node2" through_environment="env0O"
standard="802.11g" packet_size="200"/>

29 fixed. deltaQ element

The fixed_deltaQ element is used to specify fixed network conditions for a cer-
tain period of time. This is an extension of the statically-defined network conditions
by using the attributes bandwidth, loss_rate, etc. of the connection element.
This extension provides more flexibility to the users. A potential use of this element
is in the context of fault injection, to introduce temporary network faults at speci-
fied moment of time in a scenario. The fixed_deltaQ element should be included
in the connection element to which it refers.

2.9.1 Attributes

The possible attributes of a fixed_deltaQ element are presented next, together
with their roles, expected data types and values:

start_time, end_time Specifies the time moments between which the specified
fixed AQ conditions should be applied.

e Data type: double

e Value: any value (default =0 s, and 0 s, respectively)

bandwidth Specifies the fixed average bandwidth for this connection in bits per
second.

e Data type: positive double
e Value: less or equal 1,000,000,000 bps (no default value)

loss._rate Specifies the fixed average packet loss rate for this connection as a
probability.

e Data type: positive double
e Value: less or equal 1 (no default value)

delay, jitter Specify the fixed average delay and jitter for this connection in
milliseconds.

e Data type: positive double

e Value: any value (no default value)

2.10. REMARKS 21

2.9.2 Example

Below is an example of a connection that uses fixed AQ) parameters (the connection
properties are not specified here). In the interval from 0 s to 10 s and in the interval
from 20 s to 30 s, the connection will have a 10 Mb/s bandwidth, zero packet loss
probability, 5 ms delay and 1 ms jitter. However, in the interval from 10 s to 20 s,
the connection will have a 0.5 Mb/s bandwidth, packet loss probability equal to
0.9, a 25 ms delay and a 5 ms jitter, representing a significant network failure in that
interval:

<connection ... >
<fixed_deltaQ start_time="0" end_time="10"
bandwidth="10e6" loss_rate="0.00" delay="5" jitter="1"/>
<fixed_deltaQ start_time="10" end_time="20"
bandwidth="0.5e6"loss_rate="0.90" delay="25" Jjitter="5"/>
<fixed_deltaQ start_time="20" end_time="30"
bandwidth="10e6" loss_rate="0.00" delay="5" jitter="1"/>

</connection>

2.10 Remarks

We give below several clarifications regarding the information provided in the pre-
vious sections. Some of the restrictions mentioned here apply to the current version
of QOMET, but may change in future versions.

1. The strings used to define element attribute names, names of nodes, topology
objects and motion elements are all case sensitive.

2. Except for the gomet_scenario element, which must be the first element de-
fined (as it is the top-level XML document entity), for all the other elements
the order in which they are defined is inconsequential. However, some ele-
ments can only be defined within other elements, such as interface being
used within node elements, or coordinate being used within object ele-
ments.

3. At the moment of writing this document, there are only some types of checks
performed at parse time, such as checking that mandatory attributes were
assigned values, checking that attribute values have the correct data type and
data range, and checking that nodes, objects or environments with the same
name were not defined multiple times. Other incongruities, such as defining a
motion for an nonexistent node, will however be signaled as warnings during
scenario processing.

4. Currently, the number of elements of each type in a scenario (nodes, inter-
faces, objects, coordinates, environments, motions, and connections) is lim-
ited to fixed maximum values. These parameters can be changed in the source
code if required (specifically in the file “deltaQ/scenario.h”). An error will be
displayed in case the current data structures cannot fit all the elements of a

22

2. SCENARIO REPRESENTATION

certain scenario. Note, however, that using larger values increases the mem-
ory requirements of QOMET, and sufficient RAM must be present on the PC
used to run the software.

. For all internal processing operations, node names are used to identify nodes.

However, in the text output file, only node ids are included. This is to facili-
tate post-processing and plotting by using shell scripts and Matlab. The same
holds for the binary output file.

3 Utilization

QOMET is a set of wireless network emulation tools provided as a collection of
stand-alone programs and libraries. This chapter provides more details on how to
employ the QOMET set of software tools in practice. We focus here on the usage of
the stand-alone programs, which are recommended for typical users. Nevertheless,
for advanced users, details about how to employ directly the provided libraries,
for instance the wireless network emulation library for computing A parameters,
will be given in Chapter 4.

3.1 Overview

The use of QOMET involves a scenario-driven approach that consists of two main
stages, as previously mentioned in Section 1.1:

1. Offline processing of the scenario representation that describes the emulation
experiment to create the corresponding AQ) description;

2. Performing the effective emulation experiment by using the generated AQ
description to configure the communication conditions in the wired network.

Figure 3.1 summarizes this two-stage process, while also highlighting the names
of the programs used in each of them: deltaQ for the first stage, and wireconf
for the second one.

deltaQ wireconf

Scenario AQ Network
representation description configuration

Figure 3.1: Using QOMET tools for two-stage scenario-driven network emulation.

23

24 3. UTILIZATION

Before doing any processing, the user has to create the scenario representation
describing the conditions that he or she wants to emulate. At present this has to
be done by creating an XML file by following the syntax presented in Chapter 2.
No special tools are required for the scenario representation creation, and it can be
done by using any text editor!. For reference, an example scenario is provided later
in Figure 3.6.

In what follows we describe in detail the two main stages related to the use of
QOMET.

3.2 Offline processing

The scenario created using the syntax given in Chapter 2 needs to be processed
before actually performing an emulation experiment. This offline processing serves
several purposes:

o Scenario validation: Determine whether the scenario representation syntax is
correct, and whether the created representation is consistent.

o Pre-computation of fixed parameters: Compute the data that does not change
during the experiment (such as the trajectory of the nodes, in case it is fixed).
This offloads some processing that would otherwise have to be done in real-
time when running the experiments, and thus makes it possible to run larger-
scale experiments.

o Pre-computation of AQ description: Compute the estimated AQ description for
the emulated scenario, so that the user can assess in advance whether it takes
place as intended in terms of communication range, node mobility, etc.

This offline processing is done by using the stand-alone program called deltaQ,
which uses the library having the same name to perform computations (see Section
4.1). The deltaQ program was implemented in C language. It makes use of the
eXpat XML parser library [9] that needs to be compiled and installed in advance
on the platform on which deltaQ is to be run. Compiling deltaQ should be done
using the provided Makefile. So far deltaQ has been compiled mainly on UNIX
systems such as Linux and FreeBSD. Other UNIX operating systems such as Sun
Solaris, or Windows with Cygwin/Visual C compiler are only partially supported.

3.2.1 Command execution

Once deltaQis compiled and ready to use, the user must execute it as follows:

> deltaQ <scenario_file.xml>

'In the future, a graphical user interface may also be made available to facilitate the scenario
creation task.

3.2. OFFLINE PROCESSING 25

where <scenario_file.xml> is the name of the file in which the XML scenario
representation was stored.

Command-line options can be provided to de1taQ to control its execution. The
options are summarized in Figure 3.2. By default, deltaQ will do AQ computa-
tion, and will generate both text and binary AQ output, but no motion data.

General options:

-h, --help - print this help message and exit
-v, —-version - print version information and exit
-1, —-—license - print license information and exit

Output control:

-t, —-—text-only - enable ONLY text deltaQ output (no binary output)
-b, —--binary-only — enable ONLY binary deltaQ output (no text output)
-n, —--no-deltaQ - NO text NOR binary deltaQ output will be written
-m, —-motion-nam — enable output of motion data (NAM format)

-s, —-motion-ns - enable output of motion data (NS-2 format)

-j, ——-object - enable output of object data

-0, ——-output <name> - use <name> as base for generating output files,

instead of the input file name

Computation control:
-d, --disable-deltaQ - disable deltaQ computation (output still generated)

Figure 3.2: Summary of deltaQ command-line options.

3.2.2 Outputfiles

As a result of executing the deltaQ command, the scenario is parsed and pro-
cessed. By default, the output is stored in a file with the name created by ap-
pending specific extensions to the scenario name, as follows: the extension “.out”
for the text format (hence the resulting file will be named something like “sce-
nario_file.xml.out”) , the extension “.bin” for the binary format, and the extension

“.motion” for the motion data.
At this moment, the following node properties are written in the text output file

for each defined connection at each moment of time (one line per entry):

time from_node_id from_node_x from_node_y from_node_z to_node_id to_node_x
to_node_y to_node_z distance Pr SNR FER num_retr op_rate bandwidth loss_rate
delay Jjitter

Binary output is generated in a file with the appended extension “.bin” (e.g.,
“scenario_file.xml.bin”). The advantage of the binary output is that the file size
is significantly reduced when compared to the text output, since only part of the
information existing in the latter is written, and this is done in a binary form. In
addition, if communication conditions do not change in a certain interval, no binary
records are written for that interval, thus further reducing file size. The binary

26 3. UTILIZATION

format is the only format supported for effectively running emulation experiments,
as it will be discussed next.

Starting with QOMET v2.x releases, the settings file that is required for making
an emulation experiment is also automatically generated with the appended exten-
sion “.settings” (e.g., “scenario_file.xml.settings”). The generated settings file con-
tains in the first column the names of the nodes, in the second column the names
of the interfaces, and in the third column the automatically generated unique id
that corresponds to a certain node and interface pair. The fourth column contains
the IP address that will be assigned by the user to that interface. If no IP address
was associated with certain interfaces (by using the ip_address attribute of the
interface element), the IP address field is assigned the value “aaa.bbb.ccc.ddd”
which should be replaced by the user with the correct value by editing the gener-
ated file. An example generated settings file will be shown later in Figure 3.7.

3.3 Effective emulation

We shall illustrate the effective emulation process with a simple setup for wireless
network emulation, as depicted in Figure 3.3. The experiment hosts in Figure 3.3
play the role of wireless nodes, even though they are connected via a wired net-
work switch, shown in the center of the figure. The communication conditions in
the wired network are changed in a controlled fashion so as to reproduce the em-
ulated wireless network. This is achieved by means of QOMET, which is denoted
by the letter “Q” in the figure. This approach is called distributed emulation because
all the nodes participating to the emulation experiment are in charge of emulating
their own communication conditions. Another approach is that of centralized emu-
lation, in which a computer is in charge of emulating the communication conditions
for all the other experiments hosts. However, since the central computer may be-
come a bottleneck for large experiments, we use almost exclusively the distributed
approach. For a detailed introduction to network emulation and the related con-
cepts see [2].

{a) {a) £a) (o)
Experiment Experiment Experiment Experiment
Host #1 Host #2 a _ﬂost\ #3 Host #4

- ~ ~ -
4

L

1= = = 1=

Network Switch -

T = Emulated wireless network /

- — - ~ - =

- -

Figure 3.3: Distributed emulation setup.

3.3. EFFECTIVE EMULATION 27

In practice, QOMET uses the component called wireconf, which uses the li-
brary having the same name (see Section 4.2) to “drive” a link-level network em-
ulator by periodically changing its configuration parameters (bandwidth, packet
loss, delay). This makes it possible to reproduce the changing communication con-
ditions of a wireless network in the wired network over which the experiment is
actually carried out. Compiling wireconf should be done using the provided
Makefile, and it requires the following libraries to be already compiled:

e ipfw3: Needed for network emulation features. This library is based on the
open-source code available at [14], with minor modifications to integrate it
with QOMET. Compilation should be done by using the included Makefile.

e timer: Needed for event timing support. Compilation should be done by
using the included Makefile.

Mainly due to the requirements of these two libraries, wireconf can now only be
used on Red Hat Enterprise Linux 6 based systems, with support for FreeBSD 8.2
being under development.

3.3.1 Command execution

Once the wireconf program is compiled and ready to use, it should be executed
as follows:

‘> wireconf -g <gomet_output.bin> -i <current_id> -s <settings_file>

where <gomet _output .bin> is the name of the file in which the deltaQ bi-
nary output? is stored, <current_id> is the automatically generated id® of the
node and interface pair to which the current wireconf instance is associated, and
<settings_file> is the name of the file which describes the IP address settings
for the hosts involved in the emulation experiment.

The full list of configuration options for wireconf is given in Figure 3.4.

3.3.2 Using SpringOS

The command wireconf can be executed directly by the user for each experiment
host (manually or, better, through shell scripts). However, for a large number of
hosts this may lead to timing problems, as synchronous execution of commands
becomes difficult. Therefore, for large-scale and repeatable experiments a an alter-
native approach should be used, as discussed next.

Note that starting with the QOMET v2.x releases the text format output of deltaQ is not sup-
ported by wireconf anymore, and it is only intended for viewing and analysis with external pro-
grams (scripts, Matlab, etc.).

3The value of this id can be retrieved from the settings file created by deltaQ, as explained in
Section 3.2.2.

28 3. UTILIZATION

General options:
-h - print this help message and exit
-v - print version information and exit

Emulation parameters:

—-q <gomet_output.bin> - provide deltaQ output for the emulation

-1 <current_id> - set the id of the current node/interface

-s <settings_file> - provide various emulation settings

-m - use MAC addresses in settings file instead of IP
-b <broadcast_address> - (optional) provide broadcast address

Debugging options:
-n - disable real-time adjustment of deltaQ parameters
(e.g., due to contention)

Figure 3.4: Summary of wireconf command-line options.

SpringOS is the experiment-support software for StarBED. By using the tools of
SpringOS one can easily perform experiment control functions, such as powering
on and off the experiment hosts, reading and writing operating system images to
them, configuring the network topology by using VLANSs, and so on.

Another function of SpringOS is to manage the experiment execution. By using
SpringOS the user can define the tasks of each of the experiment hosts, and also
can start the experiment itself. By using this mechanism it becomes possible to run
experiments with a large number of hosts.

In order to use SpringOS, one has to write a specific script that describes the
experiment execution. An example of such a SpringOS script is provided later in
Figure 3.9. For more information on SpringOS and its utilization please see the
corresponding user manual and tutorial [8, 12].

Experiment execution via SpringOS is effectively started by using the master
command in SpringOS, as follows:

> master -S <preamble.sc> <springos_script.sc>

where <preamble.sc> is a configuration script for various settings of the exper-
iments, including user credentials, and <springos_script.sc> is the name of
the file containing the SpringOS script for that experiment..

3.4 Usage example

In this section we shall present a utilization example, detailing all the necessary ac-
tions when using QOMET. In particular, the following steps are generally required
in order to run a SpringOS-driven emulation experiment:

1. Write the QOMET scenario for the target experiment;

2. Process the QOMET scenario using the deltaQ command;

3.4. USAGE EXAMPLE 29

3. Write the SpringOS script for the experiment;
4. Distribute the QOMET output and other required files to the experiment hosts;
5. Run the experiment by using SpringOS.

Even if a user chooses not to use SpringOS, an equivalent mechanism, such as shell
scripts, is required at step 3 above, and the experiment has to be executed using
remote access tools such as ssh at step 5.

In what follows we shall illustrate each of these steps for the particular case of
a simple target experiment involving two nodes, one fixed and one mobile, located
at an initial distance of 5 m. The mobile node moves from time 0 to 30 s with speed
0.5 m/s from left to right, and then from time 30 to 60 s in the opposite direction
with the same speed. The experiment setup is shown in Figure 3.5.

Node #1

5m

Node #0

Figure 3.5: Setup of the example two-node experiment.

3.41 QOMET scenario

The QOMET scenario for an experiment such as the one discussed here must spec-
ify all the elements involved, such as:

e Scenario properties (duration, etc.);
e Wireless nodes

e Communication environment;

Connections between nodes;

Node movement.

30 3. UTILIZATION

In more complex situations, the user must also specify the topography of the virtual
world in which the experiment takes places, such as streets and buildings. All these
should be done according to the scenario representation syntax detailed in Chapter
2.

In Figure 3.6 we show the corresponding QOMET scenario representation for
the two-node experiment example introduced in Figure 3.5 (line numbers are only
shown for the reader convenience, and are not part of the scenario itself). Let us
detail the scenario representation is what follows:

e Line 1: Specifies the global properties of the scenario, such as duration (60 s)
and processing step (0.5 s);

o Lines 3-4: Define the properties of the wireless nodes, such as their name
(“node0” and “nodel”), the initial position ((0,0,0) and (0,5,0)), and the
transmit power (20 dBm);

e Line 6: Specifies the properties of the communication environment, such as its
name (“env”), the propagation attenuation, shadowing component standard
deviation and wall attenuation (5.6, 0 dBm and 0 dBm, respectively), and the
noise power (-100 dBm);

o Lines 8-11: Define the properties of the motion for “nodel”, such as the speed
(0.5 or -0.5 m/s on the 0z axis, 0 otherwise), and the interval between which
motion takes place (from 0 to 30 s for the first motion element, and from 30 to
60 s for the second one);

o Lines 13-16: Specify the properties of the connections between the two nodes,
such as the environment used (“env”), the wireless network standard (“802.11b")
and the default packet size (1024 bytes). These properties must be defined for
both directions, from “node0” to “nodel”, and from “nodel” to “node0”, and
they can be different if the user decides so;

e Line 18: Close the top-level XML element gomet _scenario that was started
on line 1.

3.4.2 Scenario processing

Assuming that the above scenario is saved into the file “scenario_file.xml”, process-
ing the scenario means running the de1taQ command as indicated in Section 3.2.1,
and providing the scenario name as its argument:

> deltaQ scenario_file.xml

This command execution will validate the scenario syntax, compute the trajec-
tory of the mobile node “nodel”, and will pre-compute the communication condi-
tions between the two nodes. As a result of the processing, the files “scenario_file.xml.out”

3.4. USAGE EXAMPLE 31
1 <gomet_scenario duration="60" step="0.5">
2
3 <node name="node0" x="0" y="0" z="0" Pt="20"/>
4 <node name="nodel" x="0" y="5" z="0" Pt="20"/>
5
6 <environment name="env" alpha="5.6" sigma="0" W="0" noise_power="-100"/>
5
8 <motion node_name="nodel" speed_x="0.5" speed_y="0" speed_z="0"
9 start_time="0" stop_time="30"/>
10 <motion node_name="nodel" speed_x="-0.5" speed_y="0" speed_z="0"
11 start_time="30" stop_time="60"/>
12
13 <connection from_node="nodeO" to_node="nodel" through_environment="env"
14 standard="802.11b" packet_size="1024"/>
15 <connection from_node="nodel" to_node="node0" through_environment="env"
16 standard="802.11b" packet_size="1024"/>
17
18 </gomet_scenario>

Figure 3.6: QOMET scenario representation for the two-node experiment.

and “scenario_file.xml.bin” will be created. The text output file “scenario_file.xml.out”
should be inspected to make sure that the scenario representation matches the in-
tended scenario. A technical computing environment such as Matlab can be used
to plot different communication and network parameters; this is especially recom-
mended for larger scenarios, since it makes it easier to spot errors. The binary
output file “scenario_file.xml.bin” is the one that will be effectively used later for
emulation experiments.

As already explained in Section 3.2.2, deltaQ also generates the settings file
that is required for running emulation experiments. This file will be created with
the name “scenario_file.xml.settings” for the QOMET scenario in our example. The
generated settings file can be used either directly, or as a template that is to be mod-
ified by the user, depending on the settings given in the scenario representation. In
the particular case of our two-node example, the generated settings file will look as
shown in Figure 3.7.

nodeO interfacel0 0 aaa.bbb.ccc.ddd
nodel interface0 1 aaa.bbb.ccc.ddd

Figure 3.7: Generated settings file for the two-node experiment.

The settings file contains in the first column the names of the nodes, and in the
second column the names of the interfaces, which are automatically assigned in
our case. The third column contains the automatically generated unique id that
corresponds to a certain node and interface pair. The fourth column contains the
IP address that will be assigned by the user to that interface. In our example, since
no IP address was associated with any of the interfaces (by using the ip_address

32 3. UTILIZATION

attribute of the interface element), the IP address field is assigned the value
“aaa.bbb.ccc.ddd”, which should be replaced by the user with the correct IP ad-
dress by editing the generated file. An example correct settings file for the two-
node experiment is shown in Figure 3.8.

nodeO interface0 0 192.168.3.10
nodel interface0 1 192.168.3.11

Figure 3.8: Generated settings file for the two-node experiment.

3.4.3 SpringOS script

In order to run an emulation experiment with the support of SpringOS, the users
must also write a SpringOS script that will be used to drive the experiment. This
script will be used by SpringOS to invoke the experiment execution on all the hosts.
A SpringOS script must contain instructions for the following items:

e Define the actions to be executed by the experiment hosts;
e Select the experiment hosts through their IP addresses (optional);
e Synchronize execution through message passing.

The SpringOS script for the two-node experiment is shown in Figure 3.9. Under-
standing this script requires at least some basic knowledge of the SpringOS script
syntax, and users are referred to [8] for details. Users should also bear in mind that
using SpringOS on the StarBED testbed implies a registration procedure as well as
making a reservation for the desired number of experiment hosts and VLANS, as
detailed in [10].

Astute readers will notice that the SpringOS script in 3.9 uses the built-in com-
mand callw to call a shell script named “run_experiment node.sh”. This shell
script is therefore executed on each of the two hosts on which our two-node ex-
ample experiment is run. A possible such shell script is shown in Figure 3.10. The
shell script starts the wireconf program, and uses the iperf command to send
traffic between the two experiment hosts.

3.4.4 File distribution

When using SpringOS, the operating system of the experiment hosts is typically
written by saving the image of a template host and writing it to all the other exper-
iment hosts. This image should include the basic OS files, and all the other tools
necessary for making the experiment. However, one often uses different scenar-
ios on the same experiment setup, and repeating the imaging process is not very
practical in such cases.

3.4. USAGE EXAMPLE 33

For updating the files that are particular to a certain experiment run in a more
convenient way, we recommend using a distribution mechanism to propagate new
or changed files to the experiment hosts. For this purpose basic UNIX tools such as
scp or rsync are very well suited. Such a distribution mechanism could be used
for propagating changes in the case of:

e Newly-generated QOMET binary output files;
e Modified programs and shell scripts;

e Modified configuration files.

3.4.5 Experiment execution

Effective experiment execution should be done as indicated in Section 3.3.2. For
our particular example, assuming the SpringOS scenario in Figure 3.9 was named
“springos_script.sc”, execution is started with the command:

> master -S preamble.sc springos_script.sc

For details on how to create the file “preamble.sc” which is specific to each regis-
tered StarBED user and project, please see the SpringOS tutorial [12].

Once experiment execution finishes, the user should gather any logs or data
files that may have resulted from running the experiment. The UNIX command
scp can again be used for this purpose.

34 3. UTILIZATION

assure num_nodes=2
export num_nodes
nodeclass client_class
{
method "thru"
partition 2
ostype "FreeBSD"
scenario
{
initialize constants
test_name="two_node_test"
test_duration="60"
packet_size="1024"
offered_load="200k"
receive my_id
recv my_id
signal setup is finished
send "setup_done"
wait for start message
recv start_msg
run experiment
callw "/bin/sh" "run_experiment_node.sh" test_name my_id \

offered_load test_duration packet_size > "/tmp/scenario.log"

define the clients

nodeset clients class client_class num num_nodes

set the IP addresses of the clients

for (i=0; i<num_nodes; i++)

{
clients[i].agent.ipaddr = "172.16.3." + tostring(10+1i)
clients[i].agent.port = "2345"

global experiment scenario
scenario
{
send id to nodes
for (i=0; i<num_nodes; i++)
{
send clients[i] tostring (i)
}
wait for all clients to finish setup
sync
{
multimsgmatch clients "setup_done"
}
send start message to all clients
multisend clients "start"
wait for clients to end execution
sleep 60

Figure 3.9: SpringOS script for the two-node experiment.

3.4. USAGE EXAMPLE

command line arguments
test_name=$1

node_1id=$2
offered_load=$3
test_duration=$4
packet_size=$5

pre-defined values
first_node_1id=0

IP_base=192.168.3

start emulation program
sudo -b ../wireconf/wireconf —-q $test_name -i $node_id -s node_settings.txt

start iperf (nodeO is server, nodel is client)

if [$node_id -eq $first_node_id]; then
starting iperf server
iperf --server —--udp --interval 0.5 -—-format k --len S$packet_size &

sleep S$test_duration
killall -INT iperf
else
starting iperf client
iperf —--client $first_node_IP --udp --interval 0.5 —--format k \
--len S$packet_size —--bandwidth S$offered load --time S$test_duration
fi

Figure 3.10: Shell script to be called by SpringOS for the two-node experiment.

36

3. UTILIZATION

4 Software components

This chapter presents details about the QOMET implementation. This information
can be used to directly employ the various QOMET libraries without the assistance
of the provided stand-alone programs.

In certain situations, one may wish to use the deltaQ wireless network com-
munication emulation library for computing AQ parameters independently from
the deltaQ stand-alone program (see Section 4.1). This may be useful in cases
when the node motion is not known in advance, for instance, when it is being de-
cided as the nodes communicate with each other, as in the case of mobile robots or
inter-vehicular communication.

Other QOMET libraries can also be used independently, such as the wireconf
link-level emulator configuration library intended for facilitating experiments (Sec-
tion 4.2), or the t imer library used for periodic execution of tasks at accurate time
intervals (see Section 4.3).

4.1 Network emulation library: deltaQ

The network emulation library deltaQ is represented by the file “libdeltaQ.a”,
and it can be used independently from the stand-alone program with the same
name. Actually the stand-alone program itself uses this library, hence its source
code, “deltaQ.c”, and the associated Makefile, are good examples of how to use the
library.

The most important functions of the deltaQ library are given below together
with a short description of their role:

scenario_deltaQ The main function of the library that computes the AQ pa-
rameters for all the connections in the scenario. The properties of dynamic
environments and other varying parameters (such as the distance between
nodes) are all automatically calculated.

37

38 4. SOFTWARE COMPONENTS

scenario_init_state The state initialization function that should be called at
least once before calling scenario_deltag, so as to perform preliminary
initializations of the internal state of the scenario. This function should also
be called before scenario_deltaQ in all the situations when the scenario
was modified (e.g., nodes or connections were added), so as to update the
internal state of the scenario.

xml _scenario parse The function that loads the initial conditions of a scenario
from the XML QOMET scenario representation file. The loaded scenario will
be available as the structure field “xml_scenario->scenario”.

For more details about the usage of each function, please see the source code of
the deltag library, in particular the main program file “deltaQ/deltaQ.c”.

4.2 Link-level emulator configuration library: wireconf

In order to allow users to configure with ease a link-level network emulator, we
introduced a QOMET library called wireconf. Using wireconf and its compan-
ion library timer for accurate time measurement (see Section 4.3), one can run
emulation experiments in a precise and convenient manner. At this moment only
ipfw3/dummynet [14] is supported as link-level emulator, but functionality can
be extended to other emulators such as NetEm by writing wrappers for the corre-
sponding API functions.

The most important functions of the wireconf library are given below together
with a short description of their role:

add_rule_and pipe Adds a dummynet rule that contains a configurable pipe to
the ipfw3 firewall configuration.

configure pipe Configures a pipe associated to a dummynet rule so as to intro-
duce artificial bandwidth limitations, packet loss, and delay. This function
can be called multiple times, as needed.

delete pipe, delete_rule Deletesa dummynet pipe or rule, respectively. These
functions can be called independently from each other if needed.

These functions should be called in the order in which they are presented in
order to successfully carry out network emulation. See the source code of the stand-
alone program wireconf available in “wireconf/wireconf.c” for a usage example.

4.3 Time measurement library: timer

The link-level emulator configuration library, wireconf, uses a companion library
for accurate time measurement, called timer. At this moment the timer library
is only available for Linux and FreeBSD.

4.4. OTHER TOOLS 39

The most important functions of the timer library are given below together
with a short description of their role::

timer reset Sets the relative time origin for the subsequent wait operations.

timer wait Causes the calling program to wait for a specified time instant to
occur. The time instant is expressed in microseconds, and is given with ref-
erence to the previously set relative time origin. This function can be called
multiple times, as needed.

These functions should be called in the order in which they are presented in
order to successfully carry out the execution of timed events. See the source code
of the stand-alone program wireconf available in “wireconf/wireconf.c” for a
usage example.

4.4 Othertools

In this section we introduce a few other QOMET components, that are not essential
for network emulation purposes, but were provided for the user convenience will
be introduced in this section.

4.4.1 Scenario generator

When working with large-scale scenarios, a useful feature is the ability to auto-
matically generate the QOMET scenario that describes the experiment. For this
purpose, we created an example C source file called “extras/generate_scenario.c”,
whose compilation produces the program named generate_scenario. Execut-
ing this program outputs to stdout a QOMET scenario file that can be saved to a
file and provided as input to the deltaQ program.

Depending on the value of constants in the source code, one can generate, for
example, a scenario in which 1000 pedestrians starting from areas at the periphery
of a 2 x 2 km square start moving using the behavioral model towards destinations
located in the center of the square following a cross like structure of roads. The
file “generate_scenario.c” can be changed by users to suit their own needs. Bear in
mind though that this file is provided just as an example, and development based
on it is not supported in any way.

4.4.2 Test suite

The QOMET distribution includes a test suite that can be used to validate the oper-
ation of QOMET after making changes to the source code. The scenarios in the test

suite also serve as examples for the various features of QOMET.
In order to run the test suite, the following command should be executed in the
“test_suite” directory:

40 4. SOFTWARE COMPONENTS

> ./run_test_suite.sh

As the test suite is executed, it reports for each test whether it succeeded or
failed. The scenarios that have failed can then be analyzed to understand what
caused execution to fail. Note that it is possible that more scenarios fail due to
the same problem. It is also possible that some unforseen errors do not cause any
scenarios to fail.

The test suite compares the QOMET text output with an output considered
valid to determine whether a test succeeded or failed; hence, it is a high-level vali-
dation procedure. In the future we aim to completely integrate a unit testing frame-
work that we created with the QOMET source code, so that a low-level checking of
the source code is done. However, as this is an extensive process, it will be done
gradually.

4.5 Software distribution

This user’s guide is distributed as part of an archive containing all the source files
for the QOMET set of tools for wireless network emulation, as well as additional
items such a validation suite, examples, etc.

The software distribution is organized into the following directories:

deltaQ/ The directory containing the deltaQ wireless network communication
emulation library source files and stand-alone program;

extras/ The directory containing files provided for user convenience, such as a sce-
nario generator, a basic QOMET scenario, etc.;

ipfw3/ The source code of the ipfw3/dummynet link-level network emulation
tools which was integrated with QOMET;

test_suite/ The validation framework for QOMET;
timer/ The timer library used in the real-time execution of QOMET;

wireconf/ The directory containing the wireconf wired-network emulator con-
figuration library and stand-alone program.

Bibliography

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, J. Cowan (ed.),
XML 1.1 (Second Edition), W3C Recommendation, 16 August 2006.

[2] R. Beuran, Introduction to Network Emulation, Pan Stanford Publishing, to ap-
pear in 2012.

[3] R. Beuran, J. Nakata, T. Okada, L. T. Nguyen, Y. Tan, Y. Shinoda, A Multi-
purpose Wireless Network Emulator: QOMET, 22nd IEEE International Confer-
ence on Advanced Information Networking and Applications (AINA 2008)
Workshops, FINA 2008 symposium, Okinawa, Japan, March 25-28, 2008, pp.
223-228.

[4] R.Beuran, L. T. Nguyen, K. T. Latt,]. Nakata, Wireless LAN Emulation, Research
Report, IS-RR-2006-015, Japan Advanced Institute of Science and Technology
(JAIST), Ishikawa, Japan, October 2006.

[5] R.Beuran, L. T. Nguyen, K. T. Latt,]. Nakata, Y. Shinoda, QOMET: A Versatile
WLAN Emulator, in Proc. of IEEE Intl. Conf. on Advanced Information Net-
working and Applications (AINA 2007), Niagara Falls, Ontario, Canada, May
21-23, 2007, pp. 348-353.

[6] R. Beuran, L. T. Nguyen, T. Miyachi, J. Nakata, K. Chinen, Y. Tan, Y. Shin-
oda, QOMB: A Wireless Network Emulation Testbed, IEEE Global Communica-
tions Conference (GLOBECOM 2009), Honolulu, Hawaii, USA, November 30—
December 4, 2009.

[7] R.Beuran, L. T. Nguyen, Y. Shinoda, QOMB Wireless Network Emulation Testbed:
Evaluation and Case Study, 5th ACM International Workshop on Wireless Net-
work Testbeds, Experimental Evaluation and Characterization (WiNTECH
2010), in conjunction with MobiCom 2010, Chicago, Illinois, September 20-24,
2010.

[8] K. Chinen, SpringOS Version 1.5 Manual, March 2011,
http:/ /www.starbed.org/documents/spol5manual-110325a.pdf

[9] James Clark, The Expat XML Parser v2.0.1, http:/ /expat.sourceforge.net.

41

42 BIBLIOGRAPHY

[10] Hokuriku StarBED Technology Center, Regarding the
Use of Hokuriku StarBED Technology Center Facilities
http:/ /www2.nict.go.jp/collabo/collabo/q262/3105/riyou/usage-en.html

[11] A. Kamerman, L. Monteban, WaveLAN[R]-1I: A high-performance wireless LAN
for the unlicensed band, Bell Labs Technical Journal, vol. 2, no. 3, pp. 118133,
August 1997.

[12] T. Miyachi, SpringOS Tutorial ~ for Scenario Execution, 2010,
http:/ /www.starbed.org/documents/SpringOS-Scenario-Tutorial-eng-
0.2.pdf

[13] T. Miyachi, K. Chinen, and Y. Shinoda, StarBED and SpringOS: Large-scale Gen-
eral Purpose Network Testbed and Supporting Software, Intl. Conf. on Perf. Evalu-
ation Methodologies and Tools (Valuetools 2006), ACM Press, Pisa, Italy, Oc-
tober 2006.

[14] L. Rizzo, ipfw3/dummynet network emulator,
http:/ /info.iet.unipi.it/ luigi/ip_-dummynet.

