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Abstract: The central practice in the development of Attribute-Based Access Control (ABAC) is policy generation,
for which supervised machine-learning approaches can achieve state-of-the-art performance. However, the
scarcity of training data poses challenges for supervised solutions, limiting their practical application. Re-
cently, large language models (LLMs) have demonstrated extraordinary proficiency in various language pro-
cessing tasks, offering the potential for policy mining in scenarios with only a few training examples. This
paper presents an LLM-based generation of fine-grained ABAC policies. The approach utilizes multiple LLMs
in a mixture-of-agents mechanism to consider the ABAC scenario from diverse perspectives. Multi-turn in-
teraction and retrieval augmented generation are combined to generate and prepare adequate LLM prompting
context. In the evaluation, we conduct experiments within an Industrial Control System (ICS) network, en-
suring that the ABAC policies align with specific security guidelines. We explore the feasibility of utilizing
policies generated by LLMs directly in the access control decision-making process. By leveraging ground
truth data, we implement an optimization module that refines the priority values of these policies, ultimately
achieving an impressive F1 score of 0.994, showing that LLMs have the potential to generate fine-grained
ABAC policies for real IT networks.

1 INTRODUCTION

With its flexibility and granularity, Attribute-Based
Access Control (ABAC) is an access control model
suitable for complex and dynamic IT environments.
A typical ABAC implementation begins with defining
system attributes and access control policies. Many
ABAC research studies aim to automate these labor-
intensive and error-prone tasks with computer-based
models. Training computer models in a supervised
approach for policy generation from text involves an-
notating thousands of sentences, which is challeng-
ing. Furthermore, adopting an already-trained model
to new systems commonly requires re-training with
new data, which is not always available

The advent of large language models (LLMs),
such as GPT-4, holds promise for addressing data
scarcity. Leveraging their exceptional language com-
prehension and generalization abilities, LLMs can
provide innovative solutions for unforeseen tasks with
minimal examples. We propose an LLM-based solu-
tion for generating fine-grained ABAC policies for IT
networks. Our approach mitigates challenges associ-
ated with LLMs, including context insufficiency and
length limit. Multiple LLMs are utilized to capitalize
on their diverse strengths. We employ an automated

multi-turn prompt construction method to systemat-
ically integrate necessary information. Furthermore,
we implement a flipped interaction pattern, allowing
LLMs to request additional data. This method effec-
tively utilizes retrieval-augmented generation (RAG)
to gather required inputs. The synthesized policies
undergo validation before being used in decision-
making.

To showcase the effectiveness of our approach,
we collaborated with a team of cybersecurity indus-
trial experts to design a typical ICS network as a run-
ning example. The National Institute of Standards and
Technology (NIST) security document, SP 800-82 r2,
is the main guideline for LLMs to follow when de-
signing ABAC policies. We evaluate the generated
policies and discuss different methods to rectify the
priority values assigned by LLMs to ensure proper
decision-making with generated policies.

In the remainder of this paper, we first present the
background and related work in Section 2. Section 3
describes the proposed approach in detail. Section 4
discusses the approach’s experimental evaluation re-
garding a typical ICS network. Finally, we conclude
the paper with a conclusion and references.
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2 BACKGROUND AND RELATED
WORK

This section presents an overview of the background
literature and relevant studies for this study.

2.1 Machine Learning for
Attribute-Based Access Control
Policy Generation

Attribute-Based Access Control (ABAC) is a flexible
approach that involves granting or denying users ac-
cess to resources based on the evaluation of policies
against specific attributes. An ABAC policy is a state-
ment that combines attributes to set restrictions and
conditions for access control decision-making.

Recently, Machine Learning (ML)–a branch of ar-
tificial intelligence (AI)–has been widely recognized
as an advanced approach in ABAC, especially in pol-
icy mining and generation. Policy can be generated
from various data sources. For example, Narouei et al.
(Narouei et al., 2017) use real-world documents to de-
velop a dataset of 2660 annotated sentences for policy
generation. Heaps et al. (Heaps et al., 2021) extract
access control information from user stories written
by software developers, which requires the identifica-
tion of actors, data objects, and operations. Access
logs are also a great resource for policy mining, as in
(Cotrini et al., 2018) and (Alohaly et al., 2019).

After being generated, policies are optimized to
minimize the unnecessary complexity of access con-
trol policies. For example, policies are clustered de-
cision effects (Ait El Hadj et al., 2017) to reduce the
redundancy. The recent work by Mitani et al. (Mitani
et al., 2023) introduces QI-ABAC, which leverages
the intentions driving the policy manager’s decision-
making to enhance neural network-based policy re-
finement using a limited set of initial policies. While
the initial findings are encouraging, there are notable
challenges associated with generating initial policies,
intentions, and training data in real-world settings.

2.2 Large Language Models

Large language models (LLMs) are transformer-
based models (Vaswani et al., 2017) with billions of
parameters. With remarkable language understanding
capabilities, they have been recruited to replace the
role of experts in various domains.

Recently, LLMs have been applied in various cy-
bersecurity applications, especially security control
(Ahmed et al., 2024; Tarek et al., 2024). For ex-
ample, SoCureLLM (Tarek et al., 2024) is a frame-

work designed for system-on-chips (SoCs) security
verification and policy generation. The policies gen-
erated by SoCureLLM require manual fidelity check-
ing performed by security experts. Despite this, So-
CureLLM’s coarse-grained security policies are pre-
sented in natural language form and potentially serve
as security guidelines for relevant SoC applications.

This paper proposes an LLM-based fine-grained
ABAC policy generation. We address challenges as-
sociated with working with LLMs, such as context
length limit and context sufficiency.

2.3 ICS and Related Security
Guidelines
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Figure 1: An example of a typical ICS network with main
segments and devices.

Industrial Control Systems (ICS) are automated con-
trol systems that manage industrial and critical in-
frastructure, such as manufacturing. In addition to
standard devices found in a typical computer net-
work, ICS includes specialized components (e.g.,
Programmable Logic Controllers (PLCs), Human-
Machine Interfaces (HMIs)), and communication pro-
tocols like Modbus, DNP3. To secure the ICS net-
work, NIST developed a security guideline, Special
Publication (SP) 800-82 r2 (Stouffer et al., 2015),
for protecting ICS environments from cybersecurity
threats. In this paper, we consider an ICS network
(as shown in Figure 1) as a running example for our
approach that follows the NIST 800-82 r2 guidelines.
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Table 1: Main data elements in the knowledge base for ICS
network and their relationship with specific tasks.

Name Data
Type

Attribute
Refinement

Policy
Generation

Introduction of ICS concept text ↭ ↭
A brief introduction of
NIST SP 800-82 r2 text ↭ ↭
ABAC’s related concepts text ↭ ↭
NIST SP 800-82 r2
specific guidelines

list
(JSON file) ↭

The ICS network overview text ↭ ↭
System information
(devices, protocols, etc.)

dataframe
(CSV files) ↭ ↭

System initial attributes list
(JSON file) ↭

Task description
and template, rules text ↭ ↭
Task few-shot examples
(for few-shot learning) text ↭ ↭
Database schema text ↭
Refined attributes list

(JSON file) ↭

3 PROPOSED APPROACH

This section describes the proposed methodology for
LLM-based fine-grained ABAC policy generation as
shown in Figure 2, with five main components:
1. Knowledge Base Construction: This component

constructs a knowledge base from initial data to
support the following tasks.

2. Prompt Construction: This component aims to
create a task-specific prompt to provide LLM with
sufficient context.

3. Attribute Refinement: This component aims to
refine attributes from a list of initial attributes.

4. Policy Generation: This component utilizes mul-
tiple LLMs as generators to generate policies
aligned with security guidelines.

5. Priority Optimization: This optional component
aims to optimize the policy priority values gener-
ated by LLMs for policy conflict resolution.

3.1 Knowledge Base Construction

To provide LLMs with the necessary context to solve
complex tasks, we set up a knowledge base for stor-
ing and managing data for subsequent analysis. Ta-
ble 1 presents an example knowledge base for policy
generation for the ICS network. Each data element
contains three essential pieces of information: name,
description, and data content. Different functions are
implemented to transform the initial data (provided
by the user) to an LLM-friendly format with useful
information for subsequent tasks, including:

1. We split the security guideline document (e.g.,
NIST SP 800-82 r2 document) into sub-sections
and paragraphs to avoid the error of context length
limits and reduce the complexity of the task.

2. System information is transformed into an SQL
database and then a database schema. The
database schema is inputted into the prompt in-
stead of the system information (see section 3.3).

3. A list of example access requests is generated
from the system information. An access request
contains a sequence of attributes and their specific
values, whose usage can be seen in Section 3.4.

4. We create embedding vectors for data names and
descriptions to support RAG.

3.2 Prompt Construction

As shown in the blue dashed box of Figure 2, the
prompt construction requires a task configuration and
interacts with the knowledge base and LLM to con-
struct a task-specific structured prompt in a multi-turn
format. As shown in Figure 3, the prompt starts with a
system message to utilize the persona pattern (White
et al., 2023), asking the LLM to act as an ICS and
ABAC expert. The prompt body contains various chat
turns; each can be a knowledge-recalling prompt (to
retrieve commonly encountered types of knowledge,
e.g., ICS, ABAC) or a knowledge-injecting prompt
(to inject novel knowledge). The prompt ends with a
task-triggering message notifying the LLM to start its
work. Additionally, a specialized prompt (the flipped
interaction pattern (White et al., 2023)) enables the
LLM to actively request new knowledge. Via sim-
ilarity search, we retrieve this knowledge from the
database in a fashion similar to RAG for integrating
into the chat session appropriately.

3.3 Attribute Refinement

The example workflow of attribute refinement is
shown in the red dashed box of Figure 2. The required
data for this task (see Table 1) is encapsulated inside
a task-specific configuration and sent to prompt con-
struction. We start with a basic list of attributes con-
taining minimal attribute information such as name
and description. We then employ an LLM to refine the
attributes using system data, such as system infras-
tructure and other information. However, we avoid
inputting the detailed information of the system to cir-
cumvent the context length limit by using the database
schema (mentioned in Section 3.1). This task requires
the LLMs to refine attributes to include more helpful
information and SQL SELECT commands (as shown
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Figure 2: System architecture with main components: 1. Knowledge Base Construction, 2. Prompt Construction, 3. Attribute
Refinement (AR), 4. Policy Generation (PG) and 5. Priority Optimization.
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System

You are a helpful expert in computer networks and
cybersecurity. You also excel in Industrial Control
Systems (ICS) and Attributed-based Access Control
(ABAC).
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Do you know about KNOWLEDGE_NAME? Please
brieftly provide your answer under 512 tokens. No
yapping!

Assistant

Yes, I am familiar with KNOWLEDGE_NAME. This
is... 

User
I am providing you with KNOWLEDGE_NAME
for doing future tasks. The description is as follows:
KNOWLEDGE_DESCRIPTION

Assistant

Thank you for providing the  KNOWLEDGE_NAME. I
will remember this guideline for future tasks.

User

Now, I want you to do TASK_NAME based on the
information and criteria provided! No yapping!

Task Triggering
Prompt

System Message

Figure 3: Main structure of a chat session.

LLM

{
"key": "src.zone.type",
"description": "The type
 of the source zone."
}

{
"key": "src.zone.type",
"type": "string",
"datatype": "string",
"description": 
"The type of the source zone. Each
zone is a network segment.",
"value": [ "INTERNET",
"CORPORATE_NW",
"ICS_DMZ", "ICS_NW", "ANY" ],
"default": "ANY",
"sql": "SELECT DISTINCT type
FROM zone"
}

Figure 4: The input and output for the attribute refinement.

in Figure 4). We then execute the SQL command
to extract the attribute’s valid values from the SQL
database. The output will be a list of refined attributes
ready for use in fine-grained policy generation.

3.4 Policy Generation

A workflow for policy generation can be seen in the
black dashed box of Figure 2. The primary informa-
tion for this policy generation process is the security
guideline and the system attributes, which have been
refined using attribute refinement. Similar to attribute
refinement, all the required data for this task (see Ta-
ble 1) is first encapsulated into a single task-specific
configuration before sending to prompt construction
to create a suitable prompt.

Since this task is complicated, we craft a list of
generation rules to guide LLMs on generating poli-
cies in an expected format (e.g., Python function with
docstring). LLMs are also required to generate the
priority values for the policies based on the guideline
and their reasoning. This is a proactive step since we
aim to use a priority-based combining algorithm for
policy conflict resolution. The example policy gener-
ated to follow the mentioned criteria and rules can be
seen in Figure 5. As depicted in this figure, the poli-
cies are structured as Python functions where each
condition in the policy specifically denies or allows
access. The policy function returns “None” as default
for cases where it does not have enough information
to make the decisions. These policies can be directly
imported into a Python runtime environment to facil-
itate access control decision-making.

Mixture of Agents. The mixture-of-agents (Wang
et al., 2024) approach allows multiple LLMs to work
collaboratively to solve a complicated task. Inspired
by this paradigm, we develop a similar solution to
incorporate multiple LLMs in the policy generation
which is demonstrated in Algorithm 1. The prompt-
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def SP800_82_51_Rule_No0_1(effect, policy, dictdat):
    """
    **Fact**: Network segmentation and segregation is one of the
most effective architectural concepts to protect ICS.
    **Reasoning**: This policy function checks if the source and
destination zones are different and if the service is essential for
cross-domain communication. If not, deny access.
    **Condition 1**: If `service.essential` is False and the source
and destination zones are different, deny access.
    **Default**: None
    **External Knowledge**: None
    **New Attribute Requirement**: None
    **Attributes**: `service.essential`, `src.zone.type`,
`dst.zone.type`
    **Potential Error**: None
    **Priority Value**: 70
    """
    if (dictdat.get("service.essential") == 0 and
        dictdat.get("src.zone.type") != dictdat.get("dst.zone.type")):
        return "deny"
    return None

Figure 5: An example of the generated policy.

construction() is a function that constructs a prompt
tailored for the policy generation task (see Section
3.2). Each LLM generator is then prompted to gener-
ate fine-grained policies. When the generators finish
their work, the results are gathered and passed on to a
subsequent aggregation process.

Algorithm 1: Policy Generation.
Data: Task Configuration T
Result: A list of generated policies

1 G → list of LLM generators;
2 t → threshold value;
3 F → {} /*empty frequency dictionary*/ ;
4 P → [] /*empty policy list*/;
5 S → prompt construction(T );
6 /*start retrieving responses from generators*/
7 foreach generator in G do
8 Prompt the generator with S;
9 Extract the policies from the response;

10 Deduplicate the policies;
11 /*start counting the votes for policies*/
12 foreach policy p in generated policies do
13 if p is in F then
14 Increase count for p by 1;
15 else
16 Add p into F with count 1;
17 end
18 end
19 end
20 /*keep policies with a high number of votes*/
21 foreach policy p in F do
22 if (p.count/len(G))↑ t then
23 Add p to P;
24 end
25 end
26 Return P;

Policy Aggregation. This module is to combine
policies generated from different LLM generators into
a single list. In the original mixture-of-agents ap-
proach (Wang et al., 2024), the aggregator, which
takes the responses from other LLM generators for
synthesizing, is also an LLM. In our approach, we use
a deterministic aggregator with a major voting mecha-
nism (lines 12 to 25 of Algorithm 1) to determine the
output policies from the generator’s responses. We
maintain a frequency dictionary to count the votes of
generators with respect to a specific policy. When a
new policy appears, its frequency is assigned to one
and will increase by one each time a generator pro-
duces a similar policy. We use an equivalent operator
to deduplicate policies and check policy similarity (in
line 10 and line 13 of the algorithm, respectively).

Policy Equivalence. Because the policies gener-
ated are in Python function format, we first check the
similarity in their abstract syntax tree (AST) using the
Python library named code diff (Smith and Johnson,
2024). Additionally, we compare the decisions made
by the two policies against the list of potential access
requests. Two policies are considered equivalent if
their decisions (e.g., allow, deny, None) are identical
for all access requests in the list. This behavior is en-
forced by setting the threshold value of 1.

Policy Validation. As shown in Figure 5, each out-
put policy is a Python function with a docstring. The
docstring provides us with useful information to val-
idate the policy. We implement various functions to
validate these generated policies in a deterministic
and non-deterministic manner, as follows.
1. Deterministic validation: We employ the Ban-

dit (OpenStack Security Group (OSSG), 2024) li-
brary to identify prevalent security vulnerabilities
in the generated code.

2. Non-deterministic validation: We use LLMs to
examine the correlation among components of
each policy to detect inconsistencies and errors.

3.5 Priority Optimization

Using LLM-generated fine-grained ABAC policies
for access control may lead to policy conflicts. To
address these conflicts, we employ a priority-based
combining algorithm for its explainability, flexibility,
and scalability. The workflow for priority optimiza-
tion is illustrated in the orange dashed box of Figure
2. We assume access to ground truth data to optimize
the priority values of the generated policies, formu-
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lated as a continuous mathematical problem to iden-
tify the optimal solution among various alternatives.

Solution Space. We define the solution space as S↓
Rn. Each solution, formulated as s = (s1,s2, . . . ,sn)
where 0 ↔ si ↔ 100 for i = 1,2, . . . ,n, is a list of n
priority values where each value is a real number from
0 to 100. Here si is the priority value for the policy pi
in a list of policies p = (p1, p2, . . . , pn).

Objective Function. The objective function of pri-
ority optimization is denoted as f : S ↗ R in which
the function f (s) will output a real value when in-
putted with solution s↘ S. The objective function f (s)
calculates the F1 score by comparing the output ac-
cess control decisions using the policies with priority
values (in a priority-based combining algorithm) and
ground truth decisions (see Section 4.1).

We conceptualize the objective function as a
black-box function, indicating that although we can
observe or measure the output for a given input,
the underlying relationship between inputs and out-
puts remains unclear or too complicated to model di-
rectly. In the context of black-box function optimiza-
tion problems, a variety of established gradient-free
approaches exist that can effectively identify optimal
solutions, which are well documented in the literature
and are readily implemented within the Python frame-
work known as Nevergrad (Rapin and Teytaud, 2018).
This paper tests the feasibility of priority optimization
using the optimizers implemented in Nevergrad, such
as CMA, DE, TBPSA, etc.

Priority Optimization Problem. Using the above
definitions, we can mathematically present our prior-
ity optimization problem as follows:

Maximize f (s)
Subject to 0 ↔ si ↔ 100, i = 1,2, . . . ,n

with s = (s1,s2, . . . ,sn)

4 EXPERIMENTAL EVALUATION

This section details the experiments conducted to as-
sess the LLM-based policy generation approach for a
typical ICS network as our running example.

4.1 Ground Truth for the Running
Example

For the typical ICS network shown in Figure 1, we
generate the list of 26616 access requests by creat-

Table 2: Preliminary performance of LLM-generated poli-
cies in access control decision-making.

Combining
Algorithm TP FP TN FN Precision Recall F1

Deny-
overrides 0 0 7801 18815 0 0 0.0

Allow-
overrides 18729 7801 0 86 0.706 0.995 0.826

Priority-
based 127 0 7801 18688 1 0.007 0.013

Weight-
based 16 0 7801 18799 1 0.001 0.002

ing valid combinations of system attributes with their
valid values. To create the access control decisions
for generated access requests, we collaborate with cy-
bersecurity experts who possess extensive knowledge
of both the ICS environment and ABAC to identify 17
guidelines from the provided NIST guidelines to for-
mulate fine-grained ABAC policies for the ICS net-
work. To further refine these expert-generated poli-
cies, experts also develop qualitative intentions—a
novel concept introduced in the QI-ABAC paper (Mi-
tani et al., 2023). Both the expert-generated policies
and these qualitative intentions are used to create a
neural network-based classifier that can yield “allow”
or “deny” decisions for input access requests. Ulti-
mately, the decisions made by the trained classifier
are considered ground truth. As a result, there are
18815 “allow” decisions and 7,801 “deny” decisions
within the ground truth data.

4.2 Preliminary Evaluation

In this section, we evaluate the feasibility of utilizing
all fine-grained ABAC policies generated by LLMs
for decision-making at a Policy Decision Point (PDP).
There is a total of 181 generated policies. For policy
conflict resolution, we utilize combining algorithms
such as Deny-overrides, Allow-overrides, Priority-
based and Weight-based algorithm. Note that the
LLM-generated priority values are used as weights in
the weight-based combining algorithm.

The preliminary evaluation of generated policies
compares output decisions to ground truth decisions.
We calculate the metrics using binary classification,
with “allow” decisions classified as positive. The
findings illustrated in Table 2 indicate that the overall
performance is unsatisfactory. Although the allow-
overrides algorithm performs better than the other al-
gorithms with an F1 score of 0.826, the abundance of
positive cases in the ground truth data raises concerns
about the reliability of these output metrics.

Our analysis identifies several contributing factors
to these adverse outcomes: (1) The high volume of
LLM-generated policies may lead to conflicts. (2)
The guidelines recommend various security strategies
(e.g., whitelisting and blacklisting), which can con-
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Figure 6: Optimization results with respect to eight algorithms. Each chart illustrates the testing F1 scores across 30 indepen-
dent runs (in lighter lines) and the mean score (in darkest lines). The horizontal red dashed line denotes the baseline score.

flict within a specific ICS network. (3) The NIST
guidelines are inherently more restrictive, prioritizing
“deny” policies over “allow” ones. (4) LLMs can only
address one guideline at a time, lacking a comprehen-
sive understanding of all guidelines.

4.3 Priority Optimization Evaluation

In this section, we evaluate the performance of op-
timizers to optimize the policy priority values. The
ground truth data is divided into 80% training and
20% testing data using stratified sampling to enhance
the generalizability of the output solutions derived
from this optimization process. This approach en-
sures that the distribution of positive and negative
samples is maintained in both sets. We run each al-
gorithm 30 times for 2000 optimization steps each.
We regenerate the training and testing data for ev-
ery run. The baseline score is the highest F1 score
sourced from the allow-overrides algorithm (see Ta-
ble 2) of the preliminary evaluation.

Optimization Results for Testing Data. Figure 6
shows the optimization process results for six ob-
served algorithms, including CMA, CMandAS3, DE,
NGOpt, RandomSearch, and TBPSA. From our ob-
servation of this figure, we can conclude various
points:
1. In general, most of the observed algorithms yield

F1 scores that surpass the baseline, demonstrating

that priority optimization is viable when ground
truth data is accessible. Additionally, the ef-
fectiveness of the algorithm exhibits variability
across different runs.

2. In evaluating the mean performance of the al-
gorithms across eight different charts, it is evi-
dent that TBPSA has the poorest results, whereas
DE achieves the highest performance. Notably,
CMandAS3, DE, NGOpt, and Random Search
demonstrate an upward trend in F1 scores as the
number of optimization steps increased. Addi-
tionally, CMA displays inconsistent performance
in F1 scores during several optimization stages.

Overall Comparison. In this section, we assess the
optimized solutions generated through the optimiza-
tion process concerning all ground truth access re-
quests. For each algorithm, the list of priority val-
ues that achieves the highest F1 score throughout the
optimization process is its optimal solution. The com-
prehensive evaluation is displayed in Table 3.

From the table presented, the optimized priority
values generated by the various optimizers are signif-
icantly superior to those produced by the LLM. No-
tably, the highest F1 score of 0.994 can be achieved
with several optimizers, including CMA, CMan-
dAS3, DE and NGOpt. However, NGOpt demon-
strates a marginally better performance, achieving the
highest Recall value of 0.989. In our system, NGOpt
is currently used as the default optimization algorithm
for refining the priority values of policies.
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Table 3: Overall comparison between the performance of
the LLM-generated and optimized priority values for ac-
cess control decision-making. The bold values are the best
results among the methods that use the priority-based com-
bining algorithms, which are marked in gray.

TP FP TN FN Precision Recall F1
Allow-
overrides 18729 7801 0 86 0.706 0.995 0.826

LLM-based
priority 127 0 7801 18688 1 0.007 0.013

CMA 18597 0 7801 218 1 0.988 0.994
CMandAS3 18597 0 7801 218 1 0.988 0.994
DE 18587 0 7801 228 1 0.988 0.994
NGOpt 18609 0 7801 206 1 0.989 0.994
Random
Search 18504 0 7801 311 1 0.983 0.992

TBPSA 18462 6150 1651 353 0.75 0.981 0.85

4.4 Discussion

The experimental evaluation of a typical ICS net-
work yields several noteworthy observations, along
with limitations that require further consideration.
Firstly, the proliferation of LLM-generated policies
often leads to conflicts and redundancies. Detect-
ing and correcting policy conflicts and redundancies
represent critical future tasks to enhance overall ef-
ficiency. Secondly, priority optimization evaluations
show that using the raw policies with optimized prior-
ity values in a priority-based combining algorithm can
yield access control decisions comparable to those de-
rived from the ground truth data. However, access to
ground truth data is crucial for precisely adjusting the
priorities of generated policies.

5 CONCLUSION

This study introduced a novel LLM-based methodol-
ogy for developing fine-grained ABAC policies and
addressing key challenges of LLMs, such as context
insufficiency, and length limit. The approach com-
bines various components, including data manage-
ment and transformation, prompt construction with
RAG-like knowledge integration and multi-turn tem-
plate, attribute refinement, mixture-of-agents policy
generation, and priority optimization.

We utilized a typical ICS network as a running ex-
ample to generate 181 fine-grained ABAC policies.
We discussed several reasons why directly applying
these policies in decision-making processes yields un-
desirable results. Our experiments with various op-
timization algorithms indicated that refining the pri-
ority values greatly enhances the effectiveness of the
generated policies, resulting in an F1 score of 0.994.

While priority optimization improves the access
control decision-making of LLM-generated policies,
its effectiveness is limited by reliance on ground truth

data. In future work, we aim to reduce this depen-
dence while optimizing policy priorities and explor-
ing methods to identify optimal guideline/policy sub-
sets and resolve policy conflicts.
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