
Constructing a Closed-Domain Question Answering
System With Generative Language Models

Hung Le
Japan Advanced Institute of Science and Technology

Nomi, Japan
hungle@jaist.ac.jp

Le-Minh Nguyen
Japan Advanced Institute of Science and Technology

Nomi, Japan
nguyenml@jaist.ac.jp

Jiaying Ni
Japan Advanced Institute of Science and Technology

Nomi, Japan
jiaying@jaist.ac.jp

Shogo Okada
Japan Advanced Institute of Science and Technology

Nomi, Japan
okada-s@jaist.ac.jp

Abstract—Generative language models such as ChatGPT are
good at producing answers for questions whose answers are
publicly available. For questions about private organization
documents, such models cannot perform well due to the fact that
they were not trained on these documents, hence the knowledge
was not embedded in their parameters. On the other hand,
traditional Question Answering (QA) systems with a Retriever
and a Reader model are interpretable and can be trained quickly
on private documents, but they require laborious annotation. The
output of QA systems is a span of text, which is not friendly to
the end users as well. In this paper, we proposed a framework
for generating closed-domain QA data set in a semi-automatic
manner, reducing human efforts. An organization-specific QA
data set was created based on this framework. Additionally, we
fine-tuned a traditional open-domain QA model on the newly
created data set, and combine the output of this model with
recently released language models to improve the naturalness
of the response. Finally, we present our results and discuss the
findings.

Index Terms—closed-domain question answering, generative
language models, natural language processing

I. INTRODUCTION

The goal of a Question Answering (QA) system is to return
accurate answers for given questions in natural language from
a user. Generally speaking, two main types of QA systems
are open-domain QA and closed-domain QA. In an open-
domain QA, the users expect the system to be able to answer
questions about any domain whose topics may not be related
to each other. Wikipedia articles are the most popular data
source for developing this kind of system. At the other end
of the spectrum, closed-domain QA models are expected to
answer questions about a much narrower domain, for example,
questions about the internal documents of an organization. Due
to the specialized and sensitive aspect of the documents, it is
difficult to obtain the annotation necessary to train machine
learning models for closed-domain QA systems.

There are three main paradigms proposed to solve the QA
task. In DrQA [1], the authors proposed an open-domain QA
system that contains a Document Retriever and a Document
Reader. In this paradigm, the retriever is responsible for

determining the small subset of relevant documents from the
large corpus, while the reader is responsible for finding the
answer spans within this subset of documents. With the advent
of the Transformer architecture, a new paradigm, where the
retriever and the reader could be jointly trained in an end-to-
end manner, emerged. Some works which could be classified
within this paradigm are R3 [2], ORQA [3], REALM [4],
and DPR [5]. Lastly, the third paradigm is composed of only
a generative model, and the answers are no longer a span
of text within a document. Instead, the knowledge is learned
during training and embedded within the weights of models.
OpenAI’s ChatGPT is currently perhaps the most prominent
system that falls into this category.

While generative large language models can store some
factual knowledge in their parameters and produce responses
in a natural tone, they have their own flaws. First, the answers
from these models are not tractable - there is no simple way to
determine the original source of the answers since the models
fused all the knowledge together when next word prediction is
the objective function. One problem that arises from this flaw
is known as “hallucination” - the model produces plausible but
incorrect answers. Second, these models are very expensive to
train or even fine-tune, hence their knowledge cannot be easily
updated to fit domain-specific needs.

Identifying these gaps, this work aims to develop a closed-
domain QA system combining the advantages of traditional
QA and generative language models while minimizing their
flaws. In particular, our main contributions are:

• We proposed a framework for semi-automatically gener-
ating the data set needed to train a traditional QA. The
framework reduced human efforts by using a generative
language model for making the questions.

• Applying the framework, we constructed an organization-
specific data set and fine-tuned a Reader model on this
data set. The experiment results show that leveraging
a fine-tuned open-domain QA model is more beneficial
than fine-tuning from scratch.

• By combining the output of the Reader model with a

20
23

 1
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 K
no

w
le

dg
e

an
d

Sy
st

em
s E

ng
in

ee
rin

g
(K

SE
) |

 9
79

-8
-3

50
3-

29
74

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
KS

E5
91

28
.2

02
3.

10
29

94
37

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on December 17,2024 at 01:27:12 UTC from IEEE Xplore. Restrictions apply.

generative language model using the prompting tech-
nique, we show that domain-specific factual-grounded
answers can be obtained without the need to fine-tune the
generative language model. In addition, the naturalness of
the responses was partly verified by human evaluators.

II. RELATED WORK

A. Question Answering systems

Traditionally, QA research focuses on extracting answers
from unstructured documents. In DrQA [1], the authors pro-
posed a Retriever and a Reader as basic components for the
QA system. Since then, much research has been dedicated
to improving the performance of each component and the
overall structure. More recently, BERTserini [6] fine-tuned a
BERT model as the Reader model and combined it with the
Anserini [7] toolbox to create a QA system over a large corpus
of Wikipedia articles. In [8], the paragraphs in the same article
are linked together, and a graph-based approach with a Graph
Retriever and a Graph Reader was developed. Graph-based
approaches for QA were further explored in [9], [10].

B. Large Language Models

Building on top of the Transformer architecture [11], large
language models such as BERT [12] and its variants (e.g.,
[13], [14]) have to bring many successes to natural lan-
guage processing applications. Two main types of language
models are masked language models for natural language
understanding [12] and auto-regressive language models for
natural language generation [15]. As researchers scale the sizes
of the auto-regressive models, some new properties appear,
referred to as “emergent abilities” of language models [16].
This finding aligns with the “scaling law of language models”
- scaling the models’ sizes improves the models’ qualities to
some extent. As these models are getting larger and larger, it
becomes more and more expensive to train or fine-tune them.

C. Memory-based Architectures

Memory-based architectures refer to architectures with an
external memory supporting the neural networks model. This
design shares some similarities with memory networks [17].
Some work has studied the utility of using external memory to
support dialog or QA systems (e.g. [18], [19]). In this paper,
the memory is the BM25 [20] index of the data set. Similar to
[21], two key features of our memory are (i) human-readable,
the memory is in natural language, and (ii) human-writable, it
is possible to edit the document index.

D. Retrieve-and-Edit approaches

Some of the previous works have attempted to first retrieve
the answers and then modify them for the final output (e.g.,
[22], [23]). This approach is known as the Retrieve-and-Edit
approach [22]. Some successful applications of this approach
include Machine Translation, Semantic Parsing, and Question
Answering [21]. Our work can be seen as under the category
of this framework.

III. METHODS

Figure 1 shows the overall architecture of our approach.
Broadly speaking, the architecture could be separated into
three distinct components: Information Retrieval (IR), Reading
Comprehension (RC), and Retelling (RT). The main purpose
of the IR component is to find top-k relevant contexts to a
question from a large pool of contexts. In our system, the
contexts are closed-domain knowledge - paragraphs obtained
from JAIST’s Handbook for Students and some of the faculties’
web pages. We use the terms paragraph and context inter-
changeably in this paper. Once relevant contexts are obtained,
the RC component will read each of the relevant contexts and
return the span of text with the highest probability of being
the answer. Most of the time, the span of text is not a full
sentence, so the last RT component will take this text span and
paraphrase it to create a user-friendly answer. From another
point of view, the extractive answer from the RC could be
seen as an external knowledge source that directs the RT’s
generative model to generate fact-based answers.

As in the traditional QA system, the Retriever in IR and
the Reader in RC need to be trained in a supervised manner.
Constructing a data set such as the SQuAD data set [24] is a
laborious (and expensive) task, so we resolved to a question
generation model to aid the construction of our data set.

A. Models and algorithm

1) Data set construction: As mentioned above, we use a
question generator and a pre-trained Reader model to assist
us in the creation of a closed-domain QA data set. Fig. 2
shows the pipeline to generate the data set. Given a domain-
specific paragraph, the Question Generator will generate a set
of questions related to the paragraph. A pre-trained Reader
then extracts the answers to the questions from the paragraph.
Finally, a human is responsible for making sure that the
questions and the answers are correct, as well as adding
additional questions/answers if necessary.

For the Question Generator, we used a T5-for-question-
generation model1. Given a context, this model was trained
end-to-end to generate multiple questions simultaneously, as
suggested in [25]. We utilized Haystack’s Question Generation
implementation for this model2. For the Reader, we used a
fine-tuned BERT-based model, which is described in more
detail in section III-A3.

We developed a web-based interface to help with the
Human Verification step during the data set generation process.
This interface is an extension of the QA-Annotator GitHub
project3 with additional features added by us: the ability
to import SQuAD’s style data set, the ability to mark a
question/answer pair as correct, ability to quickly modify the
auto-generated pairs. Our experience showed that using the
interface significantly reduced the time needed for verifying
the question/answer pairs.

1https://huggingface.co/valhalla/t5-base-e2e-qg
2https://docs.haystack.deepset.ai/docs/question˙generator
3https://github.com/impyadav/QA-Annotator

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on December 17,2024 at 01:27:12 UTC from IEEE Xplore. Restrictions apply.

Question Retriever Reader

Tutoring service is
available for the
international students
within the first year of
arrival in Japan

Generative
model

Extractive
answer

Abstractive
answer

Closed-domain
knowledge

Information Retrieval Reading Comprehension Retelling

Fig. 1. Overall architecture of our proposed method

2) Retriever: For the Retriever, we used the classical BM25
algorithm [20]. This algorithm is fast and does not require the
encoding of the query at inference time like Dense Passage
Retrieval [5]. We briefly describe the BM25 algorithm below.

Given a query Q, in order to calculate the BM25 score of a
document D, we first need to calculate the inverse document
frequency (IDF) for each keyword qi in Q:

IDF (qi) = ln(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1) (1)

where N is the total number of documents and n(qi) is
the number of documents containing the keyword qi. Then,
the BM25 score of a document D given the query Q can be
calculated according to the following formula:

(2)
score(D,Q) =

n∑
i=1

IDF (qi) ·

f(qi, D) · (ki + 1)

f(qi, D) + k1 · (1− b+ b · |D|
avgdl)

where f(qi, D) is defined as the number of times the keyword
qi occurs in D, |D| is the number of words in D, avgdl is
the average document length of all the documents. ki and b
are free parameters.

3) Reader Model: The job of the Reader is to identify the
correct span of text in the paragraph as the answer to a given
query. For the Reader, we further fine-tune the BERT Reader
models introduced by [26]. In particular, this reader is based on
BERT [12] model with one difference: the final softmax layer
over different answer spans is removed. We used BERTserini-
base and BERTserini-large with 110M and 345M parameters,
respectively. These models were fine-tuned on the SQuAD1.1
QA data set, which makes them suitable for our task.

4) Generative Language Models: For the RT component,
we tested with two generative models, namely LLaMA
(v1) [27] and Alpaca [28], [29]. For both models, we used
the efficient 7B parameters version4. LLaMA is a family of

4https://github.com/ggerganov/llama.cpp

models trained on trillions of tokens, and Alpaca is a fine-
tuned version of LLaMA with instruction-following data aim
to follow instructions.

Since the two models were meant for two different tasks,
we created different prompt templates for them. In particular,
let < Q > be the question from the user and < A > be the
extracted answer from the RC component, then the prompt
template for LLaMA is:

Transcript of a dialog, where the Student
interacts with an Assistant named AskJAIST.
AskJAIST is helpful, kind, honest, good at
writing, and never fails to answer the
Student’s requests immediately and with
precision, using the Student’s hints.

User: <Q> (hint: <A>)
AskJAIST:

And the prompt template for Alpaca is:

Below is an instruction that describes a
task. Write a response that appropriately
completes the request.
User: User asked the question: <Q>. The
answer is: <A>. Generate an appropriate
answer to the question.
AskJAIST:

B. Experiments

To conduct the experiments, first, we constructed the data set
as described in section III-A1. Then, we trained Reader models
on the newly generated data set to get the extractive answers
for the questions. Lastly, we used the extractive answers as
guidelines for the generative models. In section IV, we present
the evaluation methods and main findings of our work.

IV. RESULTS

A. Evaluation methods

The evaluation of our method contains two parts: evaluating
the quality of the fine-tuned Reader models and evaluating the
output of the generative model.

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on December 17,2024 at 01:27:12 UTC from IEEE Xplore. Restrictions apply.

Tutoring service is
available for the
international students
within the first year of
arrival in Japan

Paragraphs

Question
Generator

Auto-generated questions

Q1: Who are eligible for
tutoring service?
Q2: When is tutoring
service available?

Pre-trained
Reader

Auto-generated answers

Human
Verification

Final QA pairsA1: student
A2: within the first year
of arrival in Japan

Q1: Who are eligible for
tutoring service?
A1: international students
Q2: When is tutoring
service available?
A2: within the first year of
arrival in Japan

Fig. 2. Data set generation pipeline

TABLE I
EXAMPLE EXTRACTIVE RESPONSES

WITH AND WITHOUT THE READER’S OUTPUT

Name Content

Question Where can I find a textbook?
Extractive answer JAIST library

LLaMA The textbook you’re looking for is available
at the Main Library.

LLaMA + prompt JAIST library has textbooks.

Alpaca

Textbooks are typically available through your
school’s bookstore or online retailers such as
Amazon, Barnes and Noble, Chegg, and others.
You may also be able to find used textbooks
on websites such as Craigslist or eBay.

Alpaca + prompt

JAIST library has a wide selection of textbooks
in various languages, including English and
Japanese. You can search for books by keyword
or browse through the categories to find the
book you need.

To evaluate the quality of the Reader, we follow previous
work (i.e. [1], [6]) and use exact match (EM), F1-score (at the
token level), and recall (R - as defined in [6]) as the evaluation
metrics on the development set.

To evaluate the quality of the RT component, we selected
20 random samples from the development set, generated the
abstractive answers, and finally, five human students were
asked to rate the responses according to 5 metrics: Correct-
ness, Naturalness, Specificity, Helpfulness, and Preference. For
the Correctness metric, the evaluators were asked to decide
whether the abstractive answers correctly reflect the extractive
answers to the questions. Table I shows an example of the
abstractive responses (the evaluators were asked to evaluate
the responses from the “LLaMA + prompt” and the “Alpaca
+ prompt”, our system results are shown in bold) and table II
shows the description of the human evaluation metrics.

TABLE II
HUMAN EVALUATION METRICS FOR THE RETELLING COMPONENT.

(1 IS HIGHLY DISAGREE, 5 IS HIGHLY AGREE)

Metric Question for Evaluator Scale

Correctness Do you think this response reflects the
question and the answer? Yes or No

Naturalness How natural is this response? 1 to 5
Specificity How specific is this response? 1 to 5
Helpfulness How helpful is this response? 1 to 5

Preference Which of the two responses do you
prefer more?

R1 (Alpaca) or
R2 (LLaMA)

TABLE III
TYPES OF QUESTIONS IN THE DATA SET

(QT: QUESTION TYPE, N: NUMBER OF OCCURRENCES)

QT n QT n QT n QT n

What 729 When 35 How much 10 How often 3
Where 115 How long 33 What kind 0 What time 1
How 87 How many 30 Why 7 How far 1
Who 55 If 11 Which 3 Other types 406

B. Main Results

1) Data set generation: The first result of this paper is the
construction of a new closed-domain QA data set. Applying
the pipeline shown in Fig. 2, a total of 1535 question/answer
pairs from 385 paragraphs were generated. The paragraphs
were collected from JAIST’s Handbook for Students and some
of the faculties’ web pages. Using simple prefix string match-
ing, the number of questions belong to each type of question
was calculated in Table III. Since each question was generated
from a single paragraph (hence the answer for the question is
within the paragraph), the generated data set contains single-
hop questions.

We then divided the data set into training sets (308 para-
graphs with 1198 question/answer pairs) and development
sets (77 paragraphs with 337 question/answer pairs) for our

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on December 17,2024 at 01:27:12 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
RESULTS ON DEVELOPMENT SET

(HIGHER IS BETTER)

Model EM ↑ F1 ↑ R ↑

BERT-base-uncased 0.59 10.44 17.59
BERT-base-uncased + Fine-tune 36.50 53.97 62.26
BERT-base Serini 56.38 68.79 69.71
BERT-base Serini + Fine-tune 55.49 69.38 73.89

BERT-large-uncased 0.0 7.80 17.29
BERT-large-uncased + Fine-tune 48.96 64.33 69.02
BERT-large Serini 53.71 68.76 69.01
BERT-large Serini + Fine-tune 55.49 69.83 73.56

TABLE V
HUMAN EVALUATION OF THE ABSTRACTIVE ANSWERS

(AVERAGE RESULTS OF FIVE EVALUATORS ± STANDARD DEVIATION;
CORRECTNESS SCALE: 0 TO 1; OTHER METRIC SCALES: 1 TO 5)

Metric LLaMA Alpaca

Correctness 0.97± 0.03 0.92± 0.15
Naturalness 4.11± 0.89 4.15± 0.75
Specificity 3.81± 0.63 4.43± 0.59
Helpfulness 4.06± 0.56 4.14± 0.72

experiments.
2) Fine-tuned Reader result: Table IV shows the results of

the Reader models. BERT-base and BERT-large indicate the
BERT version we used. Serini indicates that the version was
fine-tuned on the SQuAD QA data set. Fine-tune indicates that
we additionally fine-tune the model on our own data set.

3) Results of generative answers: Table V shows the
average human evaluation results on the answers generated
by LLaMA and Alpaca models. In addition, on average,
evaluators prefer the Alpaca’s answers over the LLaMA’s ones
(57% preference for Alpaca).

V. DISCUSSION

The results from Table IV show that the fine-tuned models
perform much better than the original in the case of BERT-
base-uncased and BERT-large-uncased. This result, however,
is still lower than Serini’s versions (fine-tuned on the SQuAD
data set). Lastly, fine-tuning domain-specific data sets on top
of Serini’s versions achieve the highest performances. Table IV
suggests that it is beneficial to use models trained on open-
domain QA for closed-domain QA tasks, and if possible, the
models should be additionally fine-tuned on the closed-domain
data set.

The example from Table I demonstrated that the generative
models give very general responses without incorporating the
extractive answer. With the extractive answer, the system is
able to direct the models to generate more specific statements
while combining its own internal knowledge. Furthermore, the
extractive answer serves as an external source since it is linked
to the original paragraph, making it possible for the end user
to verify the generative models’ outputs.

Our work contains some limitations. First, we found that
sometimes the auto-generated questions do not make sense.

TABLE VI
EXAMPLE OF THE MODEL GENERATES INCORRECT ANSWER

Name Content

Question
What is NOT allowed to continue to stay in Japan
under the Immigration Control and Refugee
Recognition Act?

Extractive answer If you have a leave of absence

LLaMA + prompt
You are allowed to continue to stay in Japan under
the Immigration Control and Refugee Recognition
Act if you have a leave of absence.

Alpaca + prompt
If you are on a leave of absence, then you are not
allowed to stay in Japan under the Immigration
Control and Refugee Recognition Act.

This problem could potentially be overcome by modeling
better question generation models. Another problem with
the auto-generated questions is they usually contain the
words/phrases in the paragraphs, while real-world questions
by users usually differ from the paragraphs. The second
limitation is that sometimes the language models generate
plausible but incorrect answers. As an example, in Table VI,
LLaMA generated an incorrect answer, while Alpaca gener-
ated a correct answer. Thirdly, the human evaluation method
is somewhat subjective, a more objective large-scale version
could be explored to better understand the system’s outputs.
Lastly, generative language models are known to be “unsafe”,
and this paper has not addressed the safety problems of using
them yet.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed a closed-domain QA sys-
tem from private organization documents, combining tradi-
tional QA and generative large language models. By semi-
automatically data generation, we improved the efficiency of
generating a closed-domain QA data set and reducing human
work. Furthermore, we fine-tuned open-domain QA models
on the newly created data set and showed the possibility
of producing natural, domain-specific, and factual-grounded
answers with generative language models.

Although we get relatively reasonable results from gen-
erative language models for our closed-domain QA system,
several improvements are feasible for future work. First, the
data set collected from this work is still relatively small, a
larger data set could be collected to make the system more
useful. Second, we could investigate the power of generative
models to create useful dialog systems with long context,
making them more appealing to end-users. Finally, safeguard
methods to prevent the generative models from generating
toxic or fake information need to be investigated.

ACKNOWLEDGMENT

We thank Huynh Lab and Okada Lab’s members at JAIST
for answering the human evaluation survey. This work was
also partially supported by the Japan Society for the Promotion
of Science (JSPS) KAKENHI (Grant Numbers 22H04860,
22H00536, 23H03506).

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on December 17,2024 at 01:27:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading Wikipedia to
Answer Open-Domain Questions,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Vancouver, Canada: Association for Computational
Linguistics, Jul. 2017, pp. 1870–1879.

[2] S. Wang, M. Yu, X. Guo, Z. Wang, T. Klinger, W. Zhang, S. Chang,
G. Tesauro, B. Zhou, and J. Jiang, “R3: reinforced ranker-reader for
open-domain question answering,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI
Symposium on Educational Advances in Artificial Intelligence. New
Orleans, Louisiana, USA: AAAI Press, Feb. 2018, pp. 5981–5988.

[3] K. Lee, M.-W. Chang, and K. Toutanova, “Latent Retrieval for Weakly
Supervised Open Domain Question Answering,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, 2019, pp.
6086–6096.

[4] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang, “REALM:
retrieval-augmented language model pre-training,” in Proceedings of the
37th International Conference on Machine Learning, ser. ICML’20, vol.
119. JMLR.org, Jul. 2020, pp. 3929–3938.

[5] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen,
and W.-T. Yih, “Dense Passage Retrieval for Open-Domain Question An-
swering,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Online: Association for
Computational Linguistics, Nov. 2020, pp. 6769–6781.

[6] W. Yang, Y. Xie, A. Lin, X. Li, L. Tan, K. Xiong, M. Li, and J. Lin,
“End-to-End Open-Domain Question Answering with BERTserini,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics (Demonstrations).
Minneapolis, Minnesota: Association for Computational Linguistics,
Jun. 2019, pp. 72–77. [Online]. Available: https://aclanthology.org/N19-
4013

[7] P. Yang, H. Fang, and J. Lin, “Anserini: Enabling the Use
of Lucene for Information Retrieval Research,” in Proceedings
of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval. Shinjuku Tokyo
Japan: ACM, Aug. 2017, pp. 1253–1256. [Online]. Available:
https://dl.acm.org/doi/10.1145/3077136.3080721

[8] S. Min, D. Chen, L. Zettlemoyer, and H. Hajishirzi, “Knowledge
Guided Text Retrieval and Reading for Open Domain Question
Answering,” Apr. 2020, arXiv:1911.03868 [cs]. [Online]. Available:
http://arxiv.org/abs/1911.03868

[9] N. De Cao, W. Aziz, and I. Titov, “Question Answering by
Reasoning Across Documents with Graph Convolutional Networks,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
2306–2317. [Online]. Available: https://aclanthology.org/N19-1240

[10] X. Zhang, A. Bosselut, M. Yasunaga, H. Ren, P. Liang, C. Manning,
and J. Leskovec, “GreaseLM: Graph REASoning Enhanced Language
Models for Question Answering,” International Conference on Repre-
sentation Learning (ICLR), Jan. 2022.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances
in Neural Information Processing Systems, vol. 30. Curran Associates,
Inc., 2017.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[13] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly
Optimized BERT Pretraining Approach,” Jul. 2019, arXiv:1907.11692
[cs]. [Online]. Available: http://arxiv.org/abs/1907.11692

[14] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer

learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 140:5485–140:5551, Jan. 2020.

[15] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “XLNet: Generalized Autoregressive Pretraining for Language
Understanding,” in Advances in Neural Information Processing Systems,
vol. 32. Curran Associates, Inc., 2019.

[16] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto,
O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent Abilities of
Large Language Models,” Oct. 2022, arXiv:2206.07682 [cs]. [Online].
Available: http://arxiv.org/abs/2206.07682

[17] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in 3rd Inter-
national Conference on Learning Representations (ICLR), Conference
Track Proceedings, 2015.

[18] M. Ghazvininejad, C. Brockett, M.-W. Chang, B. Dolan, J. Gao, W.-t.
Yih, and M. Galley, “A Knowledge-Grounded Neural Conversation
Model,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, Apr. 2018, number: 1. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/11977

[19] O. Khattab, C. Potts, and M. Zaharia, “Relevance-guided Supervision
for OpenQA with ColBERT,” Transactions of the Association for
Computational Linguistics, vol. 9, pp. 929–944, 2021. [Online].
Available: https://aclanthology.org/2021.tacl-1.55

[20] S. Robertson and H. Zaragoza, “The Probabilistic Relevance Framework:
BM25 and Beyond,” Foundations and Trends® in Information
Retrieval, vol. 3, no. 4, pp. 333–389, 2009. [Online]. Available:
http://www.nowpublishers.com/article/Details/INR-019

[21] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,”
in Advances in Neural Information Processing Systems, vol. 33. Curran
Associates, Inc., 2020, pp. 9459–9474.

[22] T. B. Hashimoto, K. Guu, Y. Oren, and P. S. Liang, “A Retrieve-and-Edit
Framework for Predicting Structured Outputs,” in Advances in Neural
Information Processing Systems, vol. 31. Curran Associates, Inc., 2018.

[23] J. Gu, Y. Wang, K. Cho, and V. Li, “Search engine guided non-
parametric neural machine translation,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, May 2017.

[24] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD:
100,000+ Questions for Machine Comprehension of Text,” in
Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. Austin, Texas: Association for
Computational Linguistics, Nov. 2016, pp. 2383–2392. [Online].
Available: https://aclanthology.org/D16-1264

[25] L. E. Lopez, D. K. Cruz, J. C. B. Cruz, and C. Cheng, “Simplifying
Paragraph-Level Question Generation via Transformer Language Mod-
els,” in PRICAI 2021: Trends in Artificial Intelligence, ser. Lecture Notes
in Computer Science, D. N. Pham, T. Theeramunkong, G. Governatori,
and F. Liu, Eds. Cham: Springer International Publishing, 2021, pp.
323–334.

[26] P. Yang, H. Fang, and J. Lin, “Anserini: Reproducible Ranking
Baselines Using Lucene,” Journal of Data and Information
Quality, vol. 10, no. 4, pp. 1–20, Dec. 2018. [Online]. Available:
https://dl.acm.org/doi/10.1145/3239571

[27] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and Efficient
Foundation Language Models,” Feb. 2023, arXiv:2302.13971 [cs].
[Online]. Available: http://arxiv.org/abs/2302.13971

[28] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang,
and Tatsunori B. Hashimoto, “Stanford alpaca: An instruction-following
LLaMA model,” 2023. [Online]. Available: https://github.com/tatsu-
lab/stanford˙alpaca

[29] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi,
and H. Hajishirzi, “Self-Instruct: Aligning Language Models with Self-
Generated Instructions,” in Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
Toronto, Canada: Association for Computational Linguistics, Jul. 2023,
pp. 13 484–13 508.

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on December 17,2024 at 01:27:12 UTC from IEEE Xplore. Restrictions apply.

