
Appears in Journal of Computer and System Sciences, Vol. 61, No. 3, Dec 2000, pp. 362{399.
Preliminary version was in Advances in Cryptology { Crypto 94 Proceedings, Lecture Notes in
Computer Science Vol. 839, Y. Desmedt ed., Springer-Verlag, 1994.

The Security of the Cipher Block Chaining

Message Authentication Code

Mihir Bellare
�

Joe Kilian
y

Phillip Rogaway
z

September 12, 2001

Abstract

Let F be some block cipher (eg., DES) with block length l. The Cipher Block Chaining

Message Authentication Code (CBC MAC) speci�es that an m-block message x = x1 � � �xm

be authenticated among parties who share a secret key a for the block cipher by tagging x

with a pre�x of ym, where y0 = 0l and yi = Fa(mi�yi�1) for i = 1; 2; : : : ;m. This method

is a pervasively used international and U.S. standard. We provide its �rst formal justi�cation,

showing the following general lemma: cipher block chaining a pseudorandom function yields a

pseudorandom function. Underlying our results is a technical lemma of independent interest,

bounding the success probability of a computationally unbounded adversary in distinguishing

between a randomml-bit to l-bit function and the CBC MAC of a random l-bit to l-bit function.

�Department of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive,

La Jolla, California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Sup-

ported by NSF CAREER Award CCR-9624439 and a Packard Foundation Fellowship in Science and Engineering.
y NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540, USA. E-

mail: joe@research.nj.nec.com.
z Department of Computer Science, University of California at Davis, Davis, CA 95616, USA. E-

mail: rogaway@cs.ucdavis.edu. URL: http://wwwcsif.cs.ucdavis.edu/~rogaway. Supported by NSF CAREER

Award CCR-9624560.

1

Contents

1 Introduction 3

1.1 The problem: Is the CBC MAC secure? . 3
1.2 Our approach . 3
1.3 Results . 4
1.4 Extensions and applications . 6
1.5 History and related work . 6
1.6 Subsequent work . 6
1.7 Discussion and open questions . 7

2 De�nitions and Basic Facts 7

2.1 Families of functions . 7
2.2 Model of computation . 8
2.3 Pseudorandom functions and permutations . 9
2.4 Message authentication codes . 13
2.5 The CBC transform . 16

3 Pseudorandomness of the CBC-MAC 16

3.1 Main results . 17
3.2 Proof of Theorem 3.2 . 18
3.3 Proof of Theorem 3.1 . 20

4 Security of CBC as a MAC 28

4.1 Upper bounding the MAC insecurity of CBC . 29
4.2 Birthday attack on the CBC MAC . 30

5 Length Variability 32

References 33

A Birthday Bounds 35

2

1 Introduction

1.1 The problem: Is the CBC MAC secure?

Message authentication lets communicating partners who share a secret key verify that a received
message originates with the party who claims to have sent it. This is one of the most important
and widely used cryptographic tools. It is most often achieved using a \message authentication
code," or MAC. This is a short string MACa(x) computed on the message x to be authenticated
and the shared secret key a. The sender transmits (x;MACa(x)) and the receiver, who gets (x

0; �0),
veri�es that �0 =MACa(x

0).
The most common MAC is built using the idea of \cipher block chaining" some underlying block

cipher. To discuss this approach we �rst need some notation. Given a function f : f0; 1gl ! f0; 1gl
and a number m � 1 we denote by f (m): f0; 1gml ! f0; 1gl the function that maps an ml-bit
input x = x1 � � � xm (where jxij = l) to the l-bit string ym computed as follows: set y0 = 0l and
then iterate yi f(yi�1�xi) for i = 1; : : : ;m. We call f (m) the (m-fold) cipher block chaining

of f . A block cipher F with key-length k and block-length l speci�es a family of permutations
Fa: f0; 1gl ! f0; 1gl , one for each k-bit key a. The CBCMAC constructed from F has an associated
parameter s � l which is the number of bits it outputs. The CBC MAC is then de�ned for any
ml-bit string x = x1 : : : xm by

CBC
m-Fa(x1 : : : xm)[s]

def
= The �rst s bits of F

(m)

a (x1 � � � xm) :

The CBC MAC is an international standard [13]. The most popular and widely used special case
uses F = DES (the Data Encryption Standard; here k = 56 and l = 64) and s = 32, in which case
we recover the de�nition of the corresponding U.S. standard [2]. These standards are extensively
employed in the banking sector and in other commercial sectors. Given this degree of usage and
standardization, one might expect that there would be a large body of work aimed at learning if
the CBC MAC is secure. Yet this has not been the case. In fact, prior to the current results it
was seen as entirely possible that CBCm-F might be a completely insecure MAC even when F is
realized by a highly secure block cipher. There was no reason to believe that the internal structure
of F could not \interact badly" with the speci�cs of cipher block chaining.

1.2 Our approach

In this paper we will show that CBC MAC construction is secure if the underlying block cipher is
secure. To make this statement meaningful we need �rst to discuss what we mean by security in
each case.

What does it mean to assume a block cipher is secure? To describe the security of a block
cipher we elaborate on a viewpoint suggested by Luby and Racko� [15, 16] with regard to DES.
They suggest that a good block cipher can be assumed to behave as a good pseudorandom function
(PRF). The formal notion of a PRF is due to Goldreich, Goldwasser and Micali [10]. Roughly
said, the security of a family of functions F as a PRF is measured by an adversary's inability to
distinguish the following two types of objects, based on their input/output behavior: a black-box
for Fa(�), on a random key a; and a black-box for a truly random function f(�).

A somewhat \tighter" model for a block cipher is to say that it should behave as a good
pseudorandom permutation (PRP). The security of F as a PRP is measured by an adversary's

3

inability to distinguish the following two types of objects: a black-box for Fa(�), on a random key
a; and a black-box for a random permutation �(�).
What does it mean for a mac to be secure? Our notion of security for a message authen-
tication code adopts the viewpoint of Goldwasser, Micali and Rivest [12] with regard to signature
schemes; namely, a secure MAC must resist existential forgery under an adaptive chosen-message
attack. An adversary is allowed to obtain valid MACs of some number of messages of its choice,
and wins if it can then output a \new" message (meaning one whose MAC it did not obtain during
the chosen-message attack phase) together with a valid MAC of this message.

Concrete security. We wish to obtain results that are meaningful for practice. In particular, we
aim to say something about the correct and incorrect use of block ciphers like DES. Such functions
have �nite domains; there is no asymptotics present. Thus we are led to avoid asymptotics and to
specify security bounds quite concretely. We strive for reductions that are as security-preserving
as possible, and we measure the degree of demonstrated security by way of explicit formulas|the
\resource-translation functions."

We will only talk about �nite families of functions and the resources needed to learn things
about them. To any such family we associate an \insecurity function" that takes as input resource
bounds for the adversary and returns a real number, this number being the maximum possible
probability that an adversary could \break" the security of the family when restricted to the given
resources. The meaning of \break" di�ers according to the security goal being considered: it might
be in terms of pseudorandomness or as a MAC. The resources of interest are the running time t
of the adversary and the number of queries q that she makes to an oracle that is her only point of
access to f(�)-values for the given instance f of family F . We emphasize the importance of keeping t
and q separate: in practice, oracle queries (q) correspond to observations or interactions with a
system whose overall structure often severely limits the reasonable values; but time (t) corresponds
to o�-line computation by the adversary, and cannot, therefore, be architecturally controlled. A
proof of security for CBCm-F is obtained by upper bounding the insecurity of CBCm-F in terms of
the insecurity of F itself. Let us look at some results to see how it works.

1.3 Results

Our main result is stated formally as Theorem 3.2. Informally, it says that the CBC-MAC transform
is PRF-preserving. Namely, the CBC-MAC of a pseudorandom function (or permutation) F is itself
a pseudorandom function. The security of the CBC-MAC as a MAC follows because it is a well-
known observation that any PRF is a secure message authentication code [10, 11]|see Section 2.4
for details.

Statement. To illustrate the main result, let F be the given block cipher with block-length l.
The concrete security statement of one version of our theorem is the following: for any integers
q; t;m � 1,

Adv
prf

CBC
m-F (q; t) � Adv

prp

F (q0; t0) +
q2m2

2l�1
; (1)

where q0 = mq and t0 = t+O(mql).

Explanation of terms. Here Advprf
CBC

m-F (q; t) is the maximum, over all adversaries restricted to
q input-output examples and execution time t, of the \advantage" that the adversary has (compared

4

to simply guessing) in the game of distinguishing a random instance of family CBC
m-F from a

random function of ml bits to l bits. Similarly, AdvprpF (q; t) is the maximum, over all adversaries
restricted to q0 input-output examples and execution time t0, of the \advantage" that the adversary
has in the game of distinguishing a random instance of family F from a random permutation on
l bits. Precise de�nitions of these quantities can be found in Section 2, but for the moment, it
will suÆce to remember that for these functions a small value corresponds to a lower breaking
probability, and hence to greater security.

Qualitative interpretation. Roughly, Equation (1) says that the chance of breaking the CBC-
MAC of F using some given amount of resources is not much more than the chance of breaking F
itself with comparable resources. That is, if F is a secure PRP then CBC

m-F is a secure PRF. This
qualitative statement already conveys information of a nature not found in previous approaches to
the analysis of the CBC-MAC, because it demonstrates that if the underlying primitive is secure,
than so is the MAC based on it. Thus there is no need to directly cryptanalyze the CBC-MAC;
cryptanalytic e�ort can remain concentrated on the lower level primitive F . This is the bene�t of
the reductionist paradigm.

Quantitative interpretation. Practical information can be garnered by taking into account
the quantitative aspects of the result. First note that no matter how secure the given block cipher
F , our upper bound bound on the insecurity of CBCm-F grows proportionally to the square of the
number of queries times the square of the number of blocks in each message. If the security really
drops o� in such a manner, it is due to an inherent weakness in the CBC-MAC construction itself,
and has nothing to do with the block cipher being used.

To assess the demonstrated security of the CBC-MAC using a given block cipher F we would
use current cryptanalytic knowledge to estimate the value of �0 = Adv

prp

F (q0; t0) for given q0; t0.
Here �0 represents a probability of adversarial success that we can (for now) rule out. These values
would of necessity be conjectural. With such a value for �0 in hand, we can compute the value
of the right hand side of Equation (1) and thereby get a speci�c upper bound on the probability
of adversarial success in breaking the CBC-MAC. Numerical examples will be given later in the
paper.

Reductionist interpretation. The result can be interpreted in terms of adversary transfor-
mations as follows. Suppose there is an adversary A that breaks CBCm-F with some probability
� while using resources q and t. Then A can be turned into an adversary A0 of comparable time
complexity t0 that, making q0 = qm oracle queries, achieves advantage �0 = � � q2m2 � 2�l+1 in
breaking F itself.

Information theoretic case. The brunt of the proof addresses the information-theoretic case of
the above result. Here we consider the problem of distinguishing a random ml-bit to l-bit function
from the m-fold CBC of a random l-bit to l-bit function. In Theorem 3.1 we prove an absolute
bound of 3q2m2 � 2�l�1 on the advantage an adversary can derive. The bound holds irrespective of
the adversary's running time.

Security as a mac. Theorem 4.1 completes the picture by upper bounding the MAC-insecurity
of CBCm-F in terms of the PRP-insecurity of F . This is done by combining the above result with
Proposition 2.7, which shows that the standard PRF to MAC reduction has tight security. We also
consider the tightness of our analysis.

5

1.4 Extensions and applications

Pseudorandom functions are basic tools in cryptography. In addition to shedding light on the
security of the CBC MAC, our work provides a method of building secure PRFs that can be used
in a wide range of applications, in the following way. Cryptographic practice directly provides
PRFs (more accurately, PRPs) on �xed input lengths, in the form of block ciphers. On the other
hand, PRFs are very useful in applications, but one typically needs PRFs on long strings. The
CBC Theorem provides a provably-good way of extending the basic PRFs, which work on short
inputs, to PRFs that work on longer inputs. It was based on such constructions that PRFs were
suggested by [7] as the tool of choice for practical applications such as entity authentication and
key distribution.

The CBC MAC of an l-bit block cipher provides an eÆcient way to produce a PRF to l-
bits or fewer when the input is of �xed length ml. But often the input lengths may vary. We
describe in Section 5 some simple mechanisms to extend the CBC MAC to authenticate words of
arbitrary length. We also demonstrate that some plausible-looking mechanisms do not work, such

as MACa(x) = F
(m+1)
a (xkm).

1.5 History and related work

The lack of any theorem linking the security of F to that of F (m) lead previous users of the
CBC MAC to view F (m), and not F , as the basic primitive. For example when Bird et. al. [8]
required a practical message authentication code in order to achieve their higher-level goal of entity
authentication, they made appropriate assumptions about the CBC MAC.

A cryptanalytic approach directly attacks the CBC MAC based on details of the underlying
block cipher F . An attempt to directly attack the DES CBC MAC using di�erential cryptanalysis
is described in [17].

Another approach to studying MACs is rooted in the examination of protocols that use them.
Stubblebine and Gligor [20] �nd aws in the use of the CBC MAC in some well-known protocols.
But as the authors make clear, the CBC MAC is not itself at fault for the indicated protocol failures;
rather, it is the manner in which the containing protocols incorrectly embed the CBC MAC. The
authors go on to correct some protocols by having them properly use the CBC MAC.

The concrete security approach makes more explicit and emphatic some features already present
in the asymptotic approach typically used in theoretical works. With asymptotic analysis security
guarantees often take the form \the success probability of a polynomially bounded adversary is
negligible" (everything measured as a function of the security parameter). The concrete security
can usually be derived by examining the proof. However, a lack of focus on getting good concrete
security bounds has often led to reductions that are so ineÆcient that the results are of no obvious
use to cryptographic practice.

1.6 Subsequent work

Since the appearance of the preliminary version of this work [4] there has been further related
research.

The current paper provides an upper bound on the insecurity of the CBC MAC and our analysis
highlights the role of collisions. Preneel and van Oorschot [19] give a corresponding attack, also

6

exploiting collisions. Some gap remains between our result and theirs; closing it is an interesting
problem. See Section 4 for more information. Another attack is given in [14].

Several CBC MAC variations have been suggested to get around the problem mentioned above
that the CBC MAC is only secure when strings are of some one �xed length. One nice suggestion
is to compute the (basic) CBC MAC using a �rst key, and then encipher that result using a second
(independent) key. Petrank and Racko� analyze this construction [18].

One might ask whether the security of CBCm-F as a MAC could be shown to follow from a
weaker assumption on F than that it is a PRF. Work of An and Bellare [1] shows that it is not
enough to assume that F is a MAC; they give an example of a secure MAC F for which CBC

m-F
is not a secure MAC.

Cipher block chaining is not the only method of constructing a MAC. Amongst the many
proposed methods we mention XOR-MACs [6], HMAC [5] and UMAC [9]. Some of these alternative
constructions improve on the CBC MAC in terms of speed or security bounds.

1.7 Discussion and open questions

Block ciphers like DES are in fact permutations. One open question is whether the permutativity
of the block cipher could be exploited to prove a stronger reduction than that in our main theorem.
The fact that one typically outputs a number of bits s < l seems relevant and useful in strengthening
the bounds that would otherwise be achieved.

This paper brings out the importance of modeling the �xed input and output lengths common
to the primitives of contemporary cryptographic practice. When a family of functions, each from l

bits to L bits (for some particular and �xed values of l and L) aims to mimic a family of random
functions from l bits to L bits, we refer to this family as a �nite PRF. Finite PRFs, and the
concrete security analysis of constructions based on them, is a technique for investigating the
eÆcacy of many classical (and not-so-classical) cryptographic constructions. In this way one can
formally treat security constructs such as CBC encryption, �nding for each such construction upper
and lower bounds on its security [3].

2 De�nitions and Basic Facts

The primitives we discuss in this paper include message authentication codes, pseudorandom func-
tions and pseudorandom permutations. An important aspect of our approach is to use a \concrete"
(sometimes also called \exact") security framework, meaning there are no asymptotics. This is nec-
essary because we want to model block ciphers and their usages, and a block cipher is a �nite object.
In this section, we present de�nitions that enable a concrete security treatment. We also note basic
facts or relations that we will exploit later.

2.1 Families of functions

All the above-mentioned objects are families of functions, having security properties di�ering from
case to case. The starting point is thus to de�ne (�nite) families of functions. Security properties
will be considered later.

A family of functions is a map F : Keys(F) � Dom(F) ! Ran(F). Here Keys(F) is the key
space of F ; Dom(F) is the domain of F ; and Ran(F) is the range of F . The two-input function

7

F takes a key a 2 Keys(F) and an input x 2 Dom(F) to return a point F (a; x) 2 Ran(F). If
Keys(F) = f0; 1gk for an integer k then we refer to k as the key-length. If Dom(F) = f0; 1gd for
some integer d then we refer to d as the input-length. If Ran(F) = f0; 1gL for some integer L then
we refer to L as the output-length. In this paper, Keys(F), Dom(F), and Ran(F) will always be
�nite.

For each key a 2 Keys(F) we de�ne the map Fa: Dom(F) ! Ran(F) by Fa(x) = F (a; x) for
all x 2 Dom(F). Thus, F speci�es a collection of maps from Dom(F) to Ran(F), each map being
associated with a key. That is why F is called a family of functions. We refer to Fa as an instance

of F .
We often speak of choosing a random key a uniformly from Keys(F). This operation is written

a
R Keys(F). We write f

R F for the operation a
R Keys(F) ; f Fa. That is, f

R F denotes
the operation of selecting at random a function from the family F . When f is so selected it is
called a random instance of F .

We say that F is a family of permutations if Dom(F) = Ran(F), and for each key a 2 Keys(F)
it is the case that Fa is a permutation (ie. a bijection) on Dom(F).

Example. Any block cipher is a family of permutations. For example, DES is a family of per-
mutations with Keys(DES) = f0; 1g56 and Dom(DES) = Ran(DES) = f0; 1g64. This family has
key-length 56, input-length 64, and output-length 64.

Random functions and permutations. In order to de�ne PRFs and PRPs we �rst need to �x
two function families. One is Randl!L, the family of all functions from f0; 1gl to f0; 1gL, and the
other is Perml, the family of all permutations on f0; 1gl. Before de�ning these objects formally, let
us describe the intuition about their behavior that is important here. Consider an algorithm, A,
that has an oracle for a random instance f of Randl!L and makes some number of distinct queries
to this oracle. Then every invocation of the oracle yields an output that is random and distributed
independently of all previous outputs. If f is a random instance of Perml, then every invocation of
the oracle yields an output distributed uniformly amongst all range points not already obtained as
outputs of the oracle via previous queries.

Let us now specify these families formally. For this purpose it is convenient to �x some bijection
ordl: f0; 1gl ! f1; 2; : : : ; 2lg, given for example by a canonical ordering of the elements of f0; 1gl.
Now Randl!L: f0; 1gk�f0; 1gl ! f0; 1gL is a family with key-space f0; 1gk where k = L2l, and we
interpret a key a = a[1] � � � a[2l] in the key space as a sequence of L-bit strings that speci�es the value
of the associated function at each point in the input domain, meaning Randl!L(a; x) = a[ordl(x)].

The operation f
R Randl!L simply selects a random function of l-bits to L-bits. On the other

hand Perm
l: Keys(Perml)� f0; 1gl ! f0; 1gl has a key space given by

Keys(Perml) = f (a[1]; : : : ; a[2l]) : a[1]; : : : ; a[2l] 2 f0; 1gl are all distinct g ;

and for any key a = (a[1]; : : : ; a[2l]) in Keys(Perml) and any x 2 f0; 1gl we de�ne Perml(a; x) =

a[ordl(x)]. The operation f
R Perm

l selects a random permutation on f0; 1gl .

2.2 Model of computation

We �x some particular Random Access Machine (RAM) as a model of computation. An adversary
is a program for this RAM. An adversary may have access to an oracle. Its query-complexity, or the
number of queries it makes, is the number of times it consults this oracle. When we speak of A's

8

running time this will include A's actual execution time plus the length of A's description (meaning
the length of the RAM program that describes A). This convention eliminates pathologies caused
if one can embed arbitrarily large lookup tables in A's description.

(Alternatively, the reader can think in terms of circuits over some �xed basis of gates, like
2-input NAND gates. An adversary is such a circuit, and now time simply means the circuit size.
Circuits are allowed special query gates for making oracle queries. This formulation is simpler to
specify in full detail, but it is rather less intuitive.)

2.3 Pseudorandom functions and permutations

Distinguishers. The notion of a distinguisher is due to [10]. Let F 0: Keys(F 0) �D ! R and
F 1: Keys(F 1)�D ! R be two function families with a common domain D and a common range
R. A distinguisher for F 0 versus F 1 is an adversary A that has access to an oracle f : D ! R and,
at the end of its computation, outputs a bit. The oracle will be chosen either as a random instance
of F 0 or as a random instance of F 1, and the distinguisher is trying to tell these cases apart. The
\closer" the two families, the harder the task of the distinguisher, so that distinguishing ability
provides a measure of \distance" between function families.

PRFs. The pseudorandomness of a function family F : Keys(F)�f0; 1gl ! f0; 1gL is its \distance"
from the family of all functions. Namely, pseudorandomness measures the ability of a distinguisher
to tell whether its given oracle is a random instance of F or a random function of f0; 1gl to f0; 1gL.

De�nition 2.1 Suppose F : Keys(F) � f0; 1gl ! f0; 1gL is some function family. Then for any
distinguisher A we let

Adv
prf

F (A) = Pr
h
f

R F : Af = 1
i
� Pr

h
f

R Randl
!L : Af = 1

i
:

We associate to F an insecurity function AdvprfF (�; �) de�ned for any integers q; t � 0 via

Adv
prf

F (q; t) = max
A

n
Adv

prf

F (A)
o
:

The maximum is over all distinguishers A that make at most q oracle queries and have \running-
time" at most t.

The quantity in quotes needs to be properly de�ned, and in doing so we adopt some important
conventions. First, we de�ne the \execution-time" of A as the time taken for the execution of the
experiment f

R F ; b Af . Note that we are considering the time for all steps in the experiment,
including the time taken to compute replies to oracle queries made by A, and even the time to
select a random member of f . (Meaning the time to select a key at random from Keys(F).) The
\running-time" of A is de�ned as the execution time plus the size of the description of A, in our
�xed RAM model of computation discussed above.

With F �xed we view Adv
prf

F (�; �) as a function of q and t. This is the insecurity function of
F as a PRF, and fully captures the behavior of F as a PRF. It returns the maximum possible
advantage that a distinguisher can obtain in telling apart random instances of F from random
functions when the distinguisher is restricted to q oracle queries and time t. For any particular
values of q; t, the lower this quantity, the better the quality of F as a PRF at the given resource
constraints.

9

Note that under this concrete security paradigm there is no �xed or formal notion of a \secure
pseudorandom function family." Every family F simply has some associated insecurity as a PRF.
We use the terminology \F is a PRF" only in informal discussions. It is meant to indicate that
Adv

prf

F (q; t) is \low" for \reasonable" values of q; t. Formal result statements will always refer
directly to the insecurity function.

PRPs. Luby and Racko� de�ned a pseudorandom permutation as a family of permutations that is
computationally indistinguishable from the family of random functions [15]. Our notion is a little
di�erent. We measure distance from the family of all permutations, not the family of all functions.
Note the di�erence only manifests itself when concrete security is considered. The motivation is
that this better models concrete primitives like block ciphers.

De�nition 2.2 Suppose F : Keys(F) � f0; 1gl ! f0; 1gl is some function family. Then for any
distinguisher A we let

Adv
prp

F (A) = Pr
h
f

R F : Af = 1
i
� Pr

h
f

R Perm
l : Af = 1

i
:

We associate to F an insecurity function AdvprpF (�; �) de�ned for any integers q; t � 0 via

Adv
prp

F (q; t) = max
A
fAdvprpF (A) g :

The maximum is over all distinguishers A that make at most q oracle queries and have \running-
time" at most t.

The running-time is measured using the same conventions as used for PRFs. Informally, we say
that F is a PRP if it is a family of permutations for which AdvprpF (q; t) is \low" for \reasonable"
values of q; t.

Where is the key-length? There is one feature of the above parameterizations about which
everyone asks. Suppose F is a block cipher with key-length k, meaning Keys(F) = f0; 1gk . Ob-
viously, the key-length is an important aspect of a block cipher's security. Yet the key-length k

does not even appear explicitly in the insecurity function Adv
prp

F (q; t). Why is this? Because the
key-length of F is already reected in AdvprpF (q; t) to the extent that it matters. The truth is that
the key-length itself is not what is of relevance; what matters is the advantage a distinguisher can
obtain.

General distance measures. Above we have considered measures of \distance" between a
given family F and two particular families, that of all functions and that of all permutations. More
generally one can measure the distance between two families of functions.

De�nition 2.3 Let F : Keys(F) �D ! R and F 0: Keys(F 0) �D ! R be two function families
with a common domain D and a common range R, and let A be a distinguisher. The advantage of
A is de�ned as

AdvdistF;F 0 (A) = Pr
h
f

R F : Af = 1
i
� Pr

h
f

R F 0 : Af = 1
i
:

For any integer q we set

AdvdistF;F 0 (q) = max
A

n
AdvdistF;F 0 (A)

o
:

The maximum is over all distinguishers A that make at most q oracle queries.

10

The above is a \statistical" measure of distance in that it limits only the number of oracle queries
and not the running time of the distinguisher. We could de�ne the corresponding \computational"
measure by restricting time as well. We don't here, for simplicity, because we will not use that
notion in this paper except for the special cases of PRFs and PRPs de�ned above.

The birthday attack. A few simple facts with regard to the security of PRFs and PRPs are
worth noting as they are useful in applying our results and also in getting a better understanding
of concrete security. The following says that if E is a block cipher with output-length l then there
is an inherent limit to its quality as a PRF, namely that security vanishes as the adversary asks
about 2l=2 queries. This is regardless of the key-size of E, and results only from the fact that E
is a family of permutations rather than functions. The reason is the birthday phenomenon. The
formal statement is the following.

Proposition 2.4 Let E: Keys(E) � f0; 1gl ! f0; 1gl be any family of permutations, and let q
be an integer with 1 � q � 2(l+1)=2. Then there is a distinguisher A, making q queries and using
t = O(ql) time, such that

Adv
prf

E (A) � 0:316 � q(q � 1)

2l
:

As a consequence

Adv
prf

E (q; t) � 0:316 � q(q � 1)

2l
:

Proof: The distinguisher D is given an oracle for a function g: f0; 1gl ! f0; 1gl. It mounts the
following birthday attack:

Distinguisher Dg

For i = 1; : : : ; q do
Let xi be the i-th l-bit string in lexicographic order
Let yi g(xi)

End For
If y1; : : : ; yq are all distinct then return 1, else return 0

To lower bound the advantage of A we claim that

Pr
h
f

R E : Af = 1
i

= 1 (2)

Pr
h
f

R Randl
!l : Af = 1

i
� 1� 0:316 � q(q � 1)

2l
: (3)

Equation (2) is clear because if f is an instance of E then f is a permutation and hence y1; : : : ; yq
are all distinct. Now suppose f is a random function of l-bits to l-bits. Then the probability that
y1; : : : ; yq are all distinct is 1�C(2l; q) where C(2l; q) is the chance of a collision in the experiment
of throwing q balls randomly and independently into 2l buckets. Now Equation (3) follows from
Proposition A.1. Subtracting yields the claimed lower bound on the advantage.

11

PRPs as PRFs. Analyses of constructions (including the CBC-MAC) are often easier assuming
the underlying family is a PRF. However, a PRP better models a block cipher. To bridge this gap
we often do an analysis assuming the block cipher is a PRF and then use the following to relate
the insecurity functions. The following says, roughly, that the birthday attack is the best possible
one. A particular family of permutations E may have insecurity in the PRF sense that is greater
than that in the PRP sense, but only by an amount of q2=2l+1, the collision probability term in
the birthday attack.

Proposition 2.5 Suppose E: Keys(E)� f0; 1gl ! f0; 1gl is a family of permutations. Then

Adv
prf

E (q; t) � Adv
prp

E (q; t) +
q(q � 1)

2l+1
:

Proof: Let A by any distinguisher for E versus Randl!l that makes q oracle queries and runs for
time at most t. We show that

Adv
prf

E (A) � Adv
prp

E (A) +
q(q � 1)

2l+1
: (4)

The Proposition follows from the de�nitions of the insecurity functions.

Let A denote the distinguisher that �rst runs A to obtain an output bit b and then returns �b,
the complement of b. Let Pr1 [�] denote the probability that Af outputs 1 under the experiment

f
R Randl!l, and let Pr2 [�] denote the probability that Af outputs 1 under the experiment

f
R Perm

l. Then

Adv
prf

E (A) = Pr
h
f

R F : Af = 1
i
� Pr1

h
Af = 1

i

= Pr1
h
A
f
= 1

i
� Pr

h
f

R F : A
f
= 1

i

= Pr1
h
A
f
= 1

i
� Pr2

h
A
f
= 1

i
+ Pr2

h
A
f
= 1

i
� Pr

h
f

R F : A
f
= 1

i

= Pr1
h
A
f
= 1

i
� Pr2

h
A
f
= 1

i
+ Pr

h
f

R F : Af = 1
i
� Pr2

h
Af = 1

i

= Pr1
h
A
f
= 1

i
� Pr2

h
A
f
= 1

i
+Adv

prp

E (A) :

So it suÆces to show that

Pr1
h
A
f
= 1

i
� Pr2

h
A
f
= 1

i
� q(q � 1)

2l+1
: (5)

Assume without loss of generality that all oracle queries of A (they are the same as those of A) are
distinct. Let D denote the event that all the answers are distinct. Then

Pr1
h
A
f
= 1

i
= Pr1

h
A
f
= 1 j D

i
� Pr1 [D] + Pr1

h
A
f
= 1 j :D

i
� Pr1 [:D]

= Pr2
h
A
f
= 1

i
� Pr1 [D] + Pr1

h
A
f
= 1 j :D

i
� Pr1 [:D]

� Pr2
h
A
f
= 1

i
+ Pr1 [:D]

� Pr2
h
A
f
= 1

i
+
q(q � 1)

2l+1
:

12

In the last step we used Proposition A.1. This implies Equation (5) and concludes the proof.

It is possible that Adv
prp

F (q; t) is considerably lower than Adv
prf

F (q; t) a block cipher F . In

particular if F has output-length l then Adv
prf

F (q; t) becomes substantial by q = 2l=2 due to
Proposition 2.4, yet it might be that AdvprpF (q; t) stays low even for q far more than 2l=2. Thus
whenever possible we would prefer to bound the insecurity of a block-cipher based construction in
terms of the insecurity of the block cipher as PRP. In many cases however (including in this paper)
the construction itself is subject to birthday attacks, so it makes little di�erence in the end.

2.4 Message authentication codes

A message authentication code is a family of functionsMAC : Keys(MAC)�Dom(MAC)! f0; 1gs.
The domain is also called the message space; it is the set of strings that can be authenticated using
this function. The key a is shared between the sender and the receiver, and when the sender wants
to send a message M it computes � = MAC(a;M) and transmits the pair (M;�) to the receiver.
We typically refer to � as the \MAC" of message M . The receiver re-computes MAC(a;M) and
veri�es that this equals the value � that accompanies M .

We de�ne security by adapting and concretizing the notion of security for digital signatures of
[12]. An adversary, called a forger in this context, is allowed to mount a chosen-message attack
in which it can obtain MACs of messages of its choice. It then outputs a pair (M;�) and is
considered successful if this pair is a valid forgery, meaning that � = MAC(a;M) and furthermore
M is \new" in the sense that it was not a message whose MAC the adversary obtained during
the chosen-message attack. Formally the success of an adversary A is measured by the following
experiment:

Experiment Forge(MAC ; A)

a
R Keys(MAC)

(M;�) AMAC(a;�)

If MAC(a;M) = � and M was not a query of A to its oracle
then return 1 else return 0

The chosen-message attack is captured by giving A an oracle for MAC(a; �). It can invoke this
oracle on any message of its choice (with the restriction that this message belongs to the domain
Dom(MAC) of the message authentication code) and thereby obtain the MAC of this message.
The experiment returns 1 when A is successful in forgery, and 0 otherwise. The output message M
must also be in Dom(MAC). In what follows we assume for simplicity that Dom(MAC) = f0; 1gd
for some integer d > 0, since that is the case for the CBC MAC we consider here.

De�nition 2.6 Let MAC : Keys(MAC)�f0; 1gd ! f0; 1gs be a message authentication code, and
let A be a forger. The success probability of A is de�ned as

Advmac

MAC (A) = Pr[Experiment Forge(MAC ; A) returns 1] :

We associate to MAC an insecurity function Advmac

MAC (�; �) de�ned for any integers q; t � 0 via

Advmac

MAC (q; t) = max
A
fAdvmac

MAC (A) g :

13

The maximum is over all forgers A such that the oracle in Experiment Forge(MAC ; A) is invoked
at most q times, and the \running time" of A is at most t.

As above, the convention is that resource measures refer to the experiment measuring adversarial
success rather than to the adversary itself. In particular, q bounds the total number of queries
made in the experiment, meaning that in addition to queries made directly by the adversary, we
include in the count the query made to verify the forgery output by the adversary. The running
time is the execution time of the experiment (including the time to choose the key and answer
oracle queries) plus the size of the description of the adversary.

The de�nition follows the same format as our previous ones in associating to MAC an insecurity
function measuring its quality as a message authentication code.

We have simpli�ed by restricting the domain to strings of a �xed length because that is the
case for the basic CBC-MAC we consider. When one wants to discuss MACs over variable-length
data, one should augment the set of resources to also consider the total message length, de�ned
as the sum of the lengths of all queries made by the adversary plus the length of the message in
the forgery output by the adversary. This quantity becomes an additional input to the insecurity
function.

Pseudorandom functions make good message authentication codes. As we remarked in the
introduction the reduction is standard [10, 11]. We determine the exact security of this reduction.
The following shows that the reduction is almost tight|security hardly degrades at all. This
relation means that to prove the security of the CBC MAC as a MAC it is enough to show that
the CBC transform preserves pseudorandomness.

Proposition 2.7 Let MAC : Keys(MAC) � f0; 1gd ! f0; 1gs be a family of functions, and let
q; t � 1 be integers. Then

Advmac

MAC (q; t) � Adv
prf

MAC
(q; t0) +

1

2s
(6)

where t0 = t+O(s+ d).

Proof: Let A by any forger attacking the message authentication code MAC . Assume the oracle
in Experiment Forge(MAC ; A) is invoked at most q times, and the \running time" of A is at most
t, these quantities being measured as discussed in De�nition 2.6. We design a distinguisher BA for
MAC versus Randd!s such that

Adv
prf

MAC
(BA) � Advmac

MAC (A)�
1

2s
: (7)

Moreover B will run in time t0 and make at most q queries to its oracle, with the time measured
as discussed in De�nition 2.1. This implies Equation (6) because

Advmac

MAC (q; t) = max
A
fAdvmac

MAC (A) g

� max
A

n
Adv

prf

MAC
(BA) + 2�s

o

= max
A

n
Adv

prf

MAC
(BA)

o
+ 2�s

14

� max
B

n
Adv

prf

MAC
(B)

o
+ 2�s

= Adv
prf

MAC
(q; t0) + 2�s :

Above the �rst equality is by the de�nition of the insecurity function in De�nition 2.6. The following
inequality uses Equation (7). Next we simplify using properties of the maximum, and conclude by
using the de�nition of the insecurity function as per De�nition 2.1.

So it remains to design BA such that Equation (7) is true. Remember that BA is given an oracle
for a function f : f0; 1gd ! f0; 1gs. It will run A, providing it an environment in which A's oracle
queries are answered by BA. When A �nally outputs its forgery, BA checks whether it is correct,
and if so bets that f must have been an instance of the familyMAC rather than a random function.

By assumption the oracle in Experiment Forge(MAC ; A) is invoked at most q times, and for sim-
plicity we assume it is exactly q. This means that the number of queries made by A to its oracle
is q � 1. Here now is the code implementing BA.

Distinguisher Bf
A

For i = 1; : : : ; q � 1 do
When A asks its oracle some query, Mi, answer with f(Mi)

End For
A outputs (M;�)
�0 f(M)
If � = �0 and M 62 fM1; : : : ;Mq�1g

then return 1 else return 0

Here BA initializes A with some random sequence of coins and starts running it. When A makes
its �rst oracle query M1, algorithm BA pauses and computes f(M1) using its own oracle f . The
value f(M1) is returned to A and the execution of the latter continues in this way until all its oracle
queries are answered. Now A will output its forgery (M;�). BA veri�es the forgery, and if it is
correct, returns 1.

We now proceed to the analysis. We claim that

Pr
h
f

R MAC : Bf
A = 1

i
= Advmac

MAC (A) (8)

Pr
h
f

R Randd
!s : Bf

A = 1
i
� 1

2s
: (9)

Subtracting, we get Equation (7), and from the code it is evident that BA makes q oracle queries.
Taking into account our conventions about the running times referring to that of the entire exper-
iment it is also true that the running time of BA is t+ O(d + s). So it remains to justify the two
equations above.

In the �rst case f is an instance of MAC , so that the simulated environment that BA is providing
for A is exactly that of experiment Forge(MAC ; A). Since BA returns 1 exactly when A makes a
successful forgery, we have Equation (8).

In the second case, A is running in an environment that is alien to it, namely one where a random
function is being used to compute MACs. We have no idea what A will do in this environment,

15

but no matter what, we know that the probability that � = f(M) is 2�s, because f is a random
function, as long as A did not query M of its oracle. Equation (9) follows.

2.5 The CBC transform

Let f : f0; 1gl ! f0; 1gl be a function andm > 0 an integer. We associate to them another function
f (m): f0; 1gml ! f0; 1gl called the CBC-MAC of f , as follows. If x is a string in the domain f0; 1gml

then we view it as a sequence of l-bit blocks and let xi denote the i-th block for i = 1; : : : ;m. We
then set

Function f (m)(x1 � � � xm)
y0 0l

For i = 1; : : : ;m do yi f(yi�1�xi)
Return ym

The construct extends in a natural way to a family of functions. The CBC transform associates to
a given family F : Keys(F) � f0; 1gl ! f0; 1gl and integer m > 0 another family that we denote
CBC

m-F . It maps Keys(F)�f0; 1gml ! f0; 1gl . As the notation indicates, the new family has the
same key-space and range as F , but a larger domain. For any key a 2 Keys(F) and any input
x = x1 : : : xm 2 f0; 1gml we set

CBC
m-Fa(x1 : : : xm) = F (m)

a (x1 � � � xm) :
Or, in more detail

Function CBC
m-F (a; x1 : : : xm)

y0 0l

For i = 1; : : : ;m do yi F (a; yi�1�xi)
Return ym

We stress that the domain of CBCm-F consists of strings of length exactly ml, not at most ml.

3 Pseudorandomness of the CBC-MAC

In this section we show that the CBC-MAC transform applied to a PRF yields a PRF, and assess
how the security of the transformed family depends on that of the given family. In the next section
we derive the implications on the security of the CBC-MAC as a message authentication code.

The practical concern is the case where the family to which the CBC-MAC transform is applied
is a block cipher. The analysis however begins by considering a \thought-experiment". Namely,
we consider the CBC-MAC of a random function, or, more formally, the family resulting from
applying the CBC-MAC transform to the family Randl!l of all functions of l-bits to l-bits. By
considering this, we are asking whether the CBC-MAC transform has any inherent weaknesses,
meaning weaknesses that would exist even for \ideal" block ciphers. Our �rst result below (the
information-theoretic case of the CBC theorem) says that at least in a qualitative sense, the answer
is no: the transform is provably secure. The theorem goes further, providing also a quantitative
bound on the insecurity. The second result (the computational case of the CBC theorem) considers

16

the case of a given block cipher or family F , and bounds the insecurity of the transformed family
in terms of that of the original one.

Below we �rst present and discuss both theorems. We then prove the second, which follows
from the �rst by relatively standard means. We then go on to the main technical part of the paper,
which is the proof of the information theoretic case of the CBC theorem.

3.1 Main results

Information theoretic case. The information-theoretic case of the CBC theorem considers an
adversary A of unrestricted computational power. She is faced with the following problem. She is
given an oracle to a function g chosen in one of the following ways: either g is a random function of
ml bits to l bits, or g = f (m) for a random function f of l bits to l bits. The choice between these
two possibilities is made according to a hidden coin ip. What is A's advantage in �guring out
which type of oracle she has, as a function of the number q of oracle queries she makes? The formal
statement is made in terms of the distance function of De�nition 2.3. The proof of the following is
in Section 3.3.

Theorem 3.1 [CBC Theorem: Information-Theoretic Case] Let l;m � 1 and q � 0 be
integers. Let C = CBC

m-Randl!l and let R = Randml!l. Then

AdvdistC;R (q) � 1:5 � q
2m2

2l
:

In other words an adversary making q queries cannot have an advantage exceeding 3q2m2 � 2�l�1,
no matter what strategy this adversary uses.

Numerical example. Suppose l = 128 bits and we use the CBC MAC over a random function
to authenticate q = 230 messages of 16 KBytes each (so m = 210 blocks). Then no adversary, after
adaptively obtaining the MACs of q = 230 strings, has an advantage as large as 5:4 � 10�15 at
distinguishing these MACs from purely random strings. Consequently, no adversary will be able,
after having performed the above tests, to forge one new MAC with probability as large as 5:4�15.
(The two probabilities di�er by an additive factor of 2�128, as per Proposition 2.7).)

Computational case. Now suppose F : Keys(F) � f0; 1gl ! f0; 1gl is some given family of
functions, for example a block cipher like DES or RC6. Assume the given family is a PRF (or
PRP). We want to know how secure is the CBC-MAC based on this family. The following theorem
considers an adversary A given an oracle to a function g chosen in one of the following ways: either
g is a random function of ml bits to l bits, or g = f (m) for a random instance f of family F .
The choice between these two possibilities is made according to a hidden coin ip. What is A's
advantage in �guring out which type of oracle she has, as a function of the number q of oracle
queries she makes and the amount t of computation time she uses? The proof of the following is in
Section 3.2.

Theorem 3.2 [CBC Theorem: Computational Case] Let l;m � 1 and q; t � 0 be integers.
Let F : Keys(F)� f0; 1gl ! f0; 1gl be a family of functions. Then

Adv
prf

CBC
m-F (q; t) � Adv

prf

F (q0; t0) + 1:5 � q
2m2

2l
(10)

� Adv
prp

F (q0; t0) +
q2m2

2l�1
(11)

17

where q0 = mq and t0 = t+O(mql).

The constant hidden in the O-notation depends only on details of the model of computation. One
should think of t as being large compared to the other parameters, so that t0 � t.

Here is one way to interpret the theorem. Suppose F was Randl!l, the family of all functions.
Then Theorem 3.1 says that Advprf

CBC
m-F (q; t) would be at most 1:5 � q2m2 � 2�l. Theorem 3.2 says

that when F is not Randl!l we need to just add in the \distance" of F to Randl!l, meaning
Adv

prf

F (q0; t0). Viewed in this way, Theorem 3.2 is quite intuitive.
The reason for the second inequality in Theorem 3.2 is that block ciphers are more naturally

viewed as PRPs and thus it is more useful to phrase the bound in terms of the insecurity of F as a
PRP. (However, in this case there is little numerical di�erence in the two because the second term
in the �rst inequality is already proportional to q2.)

Numerical example. Suppose we use the CBC MAC where the underlying block cipher is the
AES algorithm (a block cipher soon to be selected by the National Institute of Standards). This
block cipher will have a block-length of l = 128 bits. Suppose some scientist �nds a practical
method which, after obtaining the MACs of q = 230 messages, each message of length 16 KBytes,
distinguishes with advantage of 1% the 230 answers just obtained and 230 random strings. Then
there is some equally practical method|it's running time is essentially that of the �rst method|
which has advantage of at least 0:01�7:2�10�15 � 1% at di�erentiating AES values on 240 points
from as many random distinct points. This would be bad news for the AES, and might be seen as
highly unlikely for a modern and conservatively designed block cipher.

3.2 Proof of Theorem 3.2

In the asymptotic setting such a proof would normally proceed by contradiction. We would assume
there was an adversary A that succeeded in \breaking" CBCm-F , and then design another adversary
BA that succeeds in \breaking" F while using resources polynomial in those used by the original
adversary. The underlying idea remains the same, but in the concrete security setting it less
convenient to use contradiction. We simply associate to any A some BA and then proceed to relate
their success probabilities. The relations must be done carefully and with regard to tightness of the
analysis. The proof below will use Theorem 3.1 in a crucial way. The main lemma below equates
the advantage of A in distinguishing between CBC

m-F and Randml!l with the sum of two other
advantages. The �rst is that obtained by BA in distinguishing between F and Randl!l, while the
second is that of A in distinguishing between CBC

m-Randl!l and Randml!l.

Lemma 3.3 Let A be a distinguisher for CBCm-F versus Randml!l which makes at most q oracle
queries and has running time at most t. Then there is a distinguisher BA for F versus Randl!l

such that

Adv
prf

CBC
m-F (A) = Adv

prf

F (BA) +Adv
prf

CBC
m-Randl!l (A) ;

and, furthermore, BA makes at most q0 oracle queries and has running time at most t0, where
q0 = mq and t0 = t+O(mql).

We conclude the proof of Theorem 3.2 given the above lemma and then return to prove the lemma.

18

Proof of Theorem 3.2: Let A be a distinguisher for CBCm-F versus Randml!l which makes at
most q oracle queries and has running time at most t. Then

Adv
prf

CBC
m-Randl!l (A) � Advdist

CBC
m-Randl!l;Randml

!l (q)

� 1:5 � q
2m2

2l
:

Here the �rst inequality is true because A makes at most q queries, and the second inequality is by
Theorem 3.1. Let BA be as given by Lemma 3.3. By that lemma and the above we have

Adv
prf

CBC
m-F (A) � Adv

prf

F (BA) + 1:5 � q
2m2

2l
: (12)

Furthermore we know that BA makes at most q0 oracle queries and has running time at most t0.
Equation (10) follows because

Adv
prf

CBC
m-F (q; t) = max

A

n
Adv

prf

CBC
m-F (A)

o

� max
A

(
Adv

prf

F (BA) + 1:5 � q
2m2

2l

)

= max
A

n
Adv

prf

F (BA)
o
+ 1:5 � q

2m2

2l

� max
B

n
Adv

prf

F (B)
o
+ 1:5 � q

2m2

2l

= Adv
prf

F (q0; t0) + 1:5 � q
2m2

2l
:

Above the �rst equality is by the de�nition of the insecurity function. The following inequality uses
Equation (12). Next we simplify using properties of the maximum, and conclude by again using
the de�nition of the insecurity function.

Equation (11) now follows from Equation (10) and Proposition 2.5:

Adv
prf

CBC
m-F (q; t) � Adv

prf

F (q0; t0) + 1:5 � q
2m2

2l

� Adv
prp

F (q0; t0) + 1:5 � q
2m2

2l
+ 0:5 � q

0(q0 � 1)

2l

� Adv
prp

F (q0; t0) +
q2m2

2l�1
:

The last inequality upper bounds q0 � 1 by q0 and substitutes q0 = qm.

Proof of Lemma 3.3: Distinguisher BA gets an oracle f : f0; 1gl ! f0; 1gl. It will run A as a
subroutine, using f to simulate the oracle g: f0; 1gml ! f0; 1gl that A expects. That is, BA will
itself provide the answers to A's oracle queries by appropriately using f .

19

Distinguisher Bf
A

For i = 1; : : : ; q do

When A asks its oracle some query, Mi, answer with f (m)(Mi)
End For
A outputs a bit, b
Return b

Here BA initializes A with some random sequence of coins and starts running it. When A makes
its �rst oracle query M1, algorithm BA pauses and computes f (m)(M1), which it can do because
f (m)(�) can be computed by making m calls to f(�). The value f (m)(M1) is returned to A and the
execution of the latter continues in this way until all its oracle queries are answered. Now A will
output its guess bit b. Adversary BA simply returns the same as its own guess bit.

We now proceed to the analysis. The oracle supplied to A by BA in the simulation is f (m) where
f is BA's oracle, and hence

Adv
prf

F (BA) = Pr
h
f

R F : Bf
A = 1

i
� Pr

h
f

R Randl
!l : Bf

A = 1
i

= Pr
h
g

R CBC
m-F : Ag = 1

i
� Pr

h
g

R CBC
m-Randl

!l : Ag = 1
i
:

On the other hand

Adv
prf

CBC
m-Randl!l (A)

= Pr
h
g

R CBC
m-Randl!l : Ag = 1

i
� Pr

h
g

R Randml!l : Ag = 1
i
:

Take the sum of the two equations above, and exploit the cancellation to get

Pr
h
g

R CBC
m-F : Ag = 1

i
� Pr

h
g

R Randml!l : Ag = 1
i
:

But this is exactly Advprf
CBC

m-F (A).

3.3 Proof of Theorem 3.1

Intuition. Before going into the formal proof, we give some intuition for it, with the caveat that
this theorem seems prone to intuitive arguments that don't hold up to more rigorous scrutiny.

First, we consider what can go wrong. In computing MACs of the form f (m)(x1 � � � xm), we
compute quantities of the form f (i)(x1 � � � xi) and f (i)(x1 � � � xi)�xi+1. Even though the results of
these subcomputations are hidden from the adversary, certain coincidences, which we call collisions,
allow the adversary to distinguish f (m) from a truly random function. For example, suppose that
for unequal sequences of i blocks, x1 � � � xi and x0

1
� � � x0i,

f (i)(x1 � � � xi) = f (i)(x0
1
� � � x0i):

Then f (m)(x1 � � � xixi+1 � � � xm) = f (m)(x0
1
� � � x0ixi+1 � � � xm) for any xi+1 � � � xm, a clear deviation

from randomness. We therefore give up if such collisions ever occur. Indeed, much of our proof

20

(Lemma 3.8, and the supporting machinery of Lemmas 3.6 and 3.7) is spent showing that these
collisions occur only rarely regardless of the strategy used by the adversary.

On the positive side, we have the following simple observation: if f(x) hasn't been computed
before or constrained in any way, then its value is uniformly distributed over l-bit strings, indepen-
dent of any previous computations. This is good in a direct way, because we want the values of
the MAC to be random. It is also good in an indirect way, because such a random value is highly
unlikely to cause a collision. The rough intuition is that we start in a collision-free state, so any
new values generated will be random. Since these values are random, they are unlikely to form a
collision.

We represent all possible subcomputations that might be performed as nodes in a large tree;
the subcomputations induced by the adversary form a subtree. The speci�c values of f (i)(x1 � � � xi)
and f (i)(x1 � � � xi)�xi+1 are represented as labels (Z and Y , respectively) of the nodes in this tree.

Our proof relies on the fact that the adversary has only a partial view of the subcomputations
performed on its behalf; if it were omniscient it could easily generate a collision. We therefore take a
Baysean viewpoint. Given the adversary's current knowledge, the \hidden" subcomputations have
some induced conditional probability distribution. We show that despite the adversary's view, the
values of these subcomputations are suÆciently random that our intuition that \random outputs
don't cause collisions" is valid.

Setup. We now begin the full proof. Fix an adversary A. Since we are not restricting compu-
tation time a standard argument shows that we may assume without loss of generality that A is
deterministic. We begin with some de�nitions. The connection between these de�nitions and the
game we are considering will be made later.

Query sequences and labelings. Call the 2l-ary rooted tree of depth m the full tree. A
sequence X = x1 � � � xi of l-bit strings (1 � i � m) names a node at depth i in the natural way. The
root is denoted �. A function f : f0; 1gl ! f0; 1gl induces labelings Yf (X) and Zf (X), recursively
de�ned by

Zf (�) = 0l;

Yf (x1 � � � xi) = Zf (x1 � � � xi�1)�xi and

Zf (X) = f(Yf (X)) for X 6= �:

Yf (�) is unde�ned. We drop the subscript when f is clear from context or unimportant to the
discussion. We sometimes refer to Y as the input labeling and Z as the output labeling, motivated
by the relation Z(X) = f(Y (X)). Note that for X 6= �, Z(X) = f (i)(X). We sometimes use
labeling to refer to both labelings.

A sequence of distinct non-root nodes X1; : : : ;Xn is a query sequence if for every i there is a
j < i such that the parent of Xi is either Xj or �. The query tree associated to a query sequence
X1; : : : ;Xn is the (rooted) subtree of the full tree induced by the nodes f�;X1; : : : ;Xng; it consists
of a collection of root emanating paths. Nodes at depth m are called border nodes.

De�nition 3.4 A labeling Y of X1; : : : ;Xn is collision free if Y (X1); : : : ; Y (Xn) are distinct;
collision-freeness for Z is de�ned analogously.

21

Figure 1: Querying the value of f (m)(X) for X = (x1; x2) corresponds
to traversing a path from the root to a leaf in the full tree. This path
follows the edge x1 to node x1, labeled with Y (x1) = x1 and Z(x1) =
f(x1). The path then follows the edge x2 to node (x1; x2), labeled with
Y (x1; x2) = Z(x1)�x2 and Z(x1; x2) = f(Y (x1; x2)). The adversary only
learns Z(x1; x2) = f (m)(X).

22

De�nition 3.5 A border labeling Ẑ of a query sequence is a map assigning an l-bit string to each
border node in the query tree. A labeling Z is consistent with a border labeling Ẑ if the two agree
on the border nodes.

A new view of the game. A query x1 � � � xm of the adversary to the g-oracle can be thought of
as specifying a root to border path in the full tree. Now imagine a slightly di�erent game in which
the adversary has more power. She can sequentially make qm queries, each a node in the full tree,
with the restriction that her queries form a query sequence X1; : : : ;Xqm. She receives no answer to
queries which are internal nodes of the full tree, but when she queries a border node she receives
its Zf value. It suÆces to prove the theorem for adversaries with this enlarged set of capabilities.

The basic random variables. The query sequence, its Zf -labeling, and the values returned
to the adversary are all random variables over the random choice of f 2 Randl!l. We denote by
X 1; : : : ;X qm the random variables which are the queries of A. We denote by Z n the labeling of

X 1; : : : ;X n speci�ed by Zf . We denote by bZ n the labeling of the border nodes of the query tree
associated to X 1; : : : ;X n speci�ed by Zf . The input labeling induced by Z n is denoted Yn. The

view of A after her n-th query is the random variable Viewn = (X 1; : : : ;X n ; bZ n).

Equi-probability of collision-free labelings. The following lemma �xes the number n of
queries that A has made. It then �xes a particular view (X1; : : : ;Xn ; Ẑ) of A. It now examines the
distribution on labelings from the point of view of A. It says that as far as A can tell, all collision
free labelings of X1; : : : ;Xn consistent with her current view are equally likely.

Lemma 3.6 Let 1 � n � qm and let X1; : : : ;Xn be a query sequence. Let Z1

n and Z2

n be collision
free (output) labelings of X1; : : : ;Xn which are consistent with a border labeling Ẑn of X1; : : : ;Xn.
Then

Pr
h
Z n = Z1

n j Viewn = (X1; : : : ;Xn ; Ẑn)
i
= Pr

h
Z n = Z2

n j Viewn = (X1; : : : ;Xn ; Ẑn)
i
;

where the probability is taken over the choice of f .

Proof of Lemma 3.6: The proof is by induction on n. The lemma holds vacuously for n = 1.
Assuming the lemma for 1; : : : ; n� 1 we now prove it for n. Let Zi

n�1
be the restriction of Zi

n to

X1; : : : ;Xn�1 (i = 1; 2). Let Ẑn�1 be the restriction of Ẑn to the border nodes of X1; : : : ;Xn�1.
Let Vi be the event Viewi = (X1; : : : ;Xi ; Ẑi) and let Prj [�] = Pr[� jVj], for j = n�1; n. Let Y i

j

denote the input labeling induced by Zi
j for j = n� 1; n and i = 1; 2. We consider two cases.

Case 1. Xn is not a border node.

For i = 1; 2 we have:

Prn
h
Z n = Zi

n

i
= Prn�1

h
Z n = Zi

n

i

= Prn�1

h
Z n�1 = Zi

n�1

i
� Prn�1

h
Z n(Xn) = Zi

n(Xn) j Z n�1 = Zi
n�1

i

= Prn�1

h
Z n�1 = Zi

n�1

i
� 2�l :

The proof is concluded by using the inductive hypothesis. We now justify the above three equalities.
Since Xn is not a border node, it is determined by X1; : : : ;Xn�1 ; Ẑn�1. This means that Prn[�]

23

equals Prn�1[�] which justi�es the �rst equality. The second is just conditioning. Since Zi
n is

collision free, Y i
n di�ers from all the points Y i

n�1
(X1); : : : ; Y

i
n�1

(Xn�1) on which the underlying
randomly chosen f has been evaluated so far. But Z n(Xn) = f(Y i

n(Xn)), so the second term in the
product in the second line above is indeed 2�l, implying the third equality. Note that the above
probabilities are not conditioned on Z n being collision free.

Case 2. Xn is a border node.

Both Z1

n and Z2

n are by assumption consistent with Ẑn. But since Xn is a border node, the value

�̂
def
= Z n(Xn) is contained in Ẑn, and �̂ = Z1

n(Xn) = Z2

n(Xn). Now for i = 1; 2 we have:

Prn
h
Z n�1 = Zi

n�1

i
= Prn�1

h
Z n�1 = Zi

n�1
j Z n(Xn) = �̂

i

= Prn�1

h
Z n(Xn) = �̂ j Z n�1 = Zi

n�1

i
� Prn�1

�
Z n�1 = Zi

n�1

�
Prn�1

h
Z n(Xn) = �̂

i

= 2�l � Prn�1

�
Z n�1 = Zi

n�1

�
Prn�1

h
Z n(Xn) = �̂

i :

The events Vn and Vn�1 ^ (Z n(Xn) = �̂) are the same, since Z n(Xn) = �̂ \�lls" in the portion
of Viewn not contained in Viewn�1; the �rst equality follows. The second equality follows from
Bayes rule. That the �rst term of the product in the second line above is indeed 2�l is argued as in
Case 1 based on the fact that Zi

n is collision free. Now note the denominator in the fraction above
is independent of i 2 f1; 2g. Applying the inductive hypothesis, we conclude that

Prn
h
Z n�1 = Z1

n�1

i
= Prn

h
Z n�1 = Z2

n�1

i
: (13)

Now for i = 1; 2:

Prn
h
Z n = Zi

n

i
= Prn

h
Z n�1 = Zi

n�1

i
� Prn

h
Z n(Xn) = �̂ j Z n�1 = Zi

n�1

i

= Prn
h
Z n�1 = Zi

n�1

i
� 1 :

The second term in the above product is 1 because Vn contains �̂ as the value of Z n(Xn). The
proof for this case is concluded by applying Equation 13.

More definitions. Let X1; : : : ;Xn be a query sequence. We will discuss labelings ~z which assign
values only to some speci�ed subset S of this sequence. The input labeling induced by ~z assigns
values to all nodes of X1; : : : ;Xn which are at level one and all nodes whose parents are in S. We
can discuss collision freeness of such labelings, or their consistency with a border labeling, in the
usual way. We denote by Z S

n the labeling of S given by restricting Z n to S. Let ColFree(Z) be true
if labeling Z is collision free.

Unpredictability of internal labels. The following lemma �xes the number n of queries
that A has made, as well as a particular view X1; : : : ;Xn ; Ẑ of A. It now makes the assumption
that the current labeling Z n is collision free; think of this fact as being known to A. Given all
this, it examines the distribution on labels from the point of view of A. Some labels are known:

24

for example, the Z n values of border nodes and the Yn values of nodes at depth one. The lemma
says that all other labels are essentially unpredictable. First, it considers a node x1 � � � xixi+1 that
is at depth at least two, and says that even given the output labels (i.e. Z n values) of all nodes
except its parent x1 � � � xi, the Yn value of x1 � � � xixi+1 is almost uniformly distributed. Second, it
considers a node x1 � � � xi that is not a border node, and says that even given the output labels of
all other nodes, the Z n value of x1 � � � xi is almost uniformly distributed. For technical reasons the
lemma requires a bound on the number n of queries that have been made.

Lemma 3.7 Let 1 � n � qm�1 and suppose n2=4 + n � 1 � 2l=2. Let X1; : : : ;Xn be a query
sequence and let Ẑ be a labeling of the border nodes of X1; : : : ;Xn. Let

Prn [�] = Pr
h
� j Viewn = (X1; : : : ;Xn ; Ẑ) ^ ColFree(Z n)

i
;

where the probability is taken over the choice of f . Suppose x1 � � � xi 2 fX1; : : : ;Xng is a non-
border node and let S = fX1; : : : ;Xng � fx1 � � � xig. Suppose ~z: S ! f0; 1gl is a collision free
labeling of S that is consistent with Ẑ.

(1) Let x1 � � � xixi+1 2 S be a child of x1 � � � xi. Then for any y� 2 f0; 1gl:
Prn

h
Yn(x1 � � � xixi+1) = y� j Z S

n = ~z
i
� 2 � 2�l :

(2) For any z� 2 f0; 1gl:
Prn

h
Z n(x1 � � � xi) = z� j Z S

n = ~z
i
� 2 � 2�l :

Proof of Lemma 3.7: Let x1 � � � xixui+1
(u = 1; � � � ; s) be the children of x1 � � � xi. Denote by

children(x1 � � � xi) the set fx1 � � � xix1i+1
; � � � ; x1 � � � xixsi+1

g.Let ~y: fX1; : : : ;Xng�children(x1 � � �
xi)! f0; 1gl be the input labeling induced by ~z. We prove the two claims in turn.

Proof of (1). Let's begin by giving some intuition for the proof. We observe that with ~z given, if
we assign an input label y 2 f0; 1gl to x1 � � � xixi+1 then the value of Z n at the parent node x1 � � � xi
is determined; given this, the values of Yn at the other children of x1 � � � xi are also determined.
Thus, both Z n and Yn are now fully determined for all nodes X1; : : : ;Xn. We will show that there
is a large set S(~z) of these y values for which the determined labeling is collision free. Moreover,
all collision free labelings have this form and are equally likely by Lemma 3.6; thus as far as A can
tell, the value at x1 � � � xixi+1 is equally likely to be anything from the set S(~z). The formal proof
follows.

Assume without loss of generality that x1 � � � xix1i+1
= x1 � � � xixi+1. Let y 2 f0; 1gl be some �xed

string. Now de�ne the labeling Z~z;y: fX1; : : : ;Xng ! f0; 1gl by:

Z~z;y(Xj) =

(
~z(Xj) if Xj 6= x1 � � � xi
y�x1i+1

otherwise.

Let Y~z;y denote the input labeling induced by Z~z;y, and observe that it is given by

Y~z;y(Xj) =

(
~y(Xj) if Xj 62 children(x1 � � � xi)
y�x1i+1

�xui+1
if Xj = x1 � � � xixui+1

for some 1 � u � s.

Let S(~z) be the set of all strings y such that Z~z;y is a collision free labeling. We leave to the reader
to check that y 62 S(~z) if and only if one of the following two conditions is satis�ed:

25

(1) Either y�x1i+1
2 f ~z(Xj) : 1 � j � n and Xj 6= x1 � � � xi g; or

(2) For some u 2 f1; : : : ; sg it is the case that y�x1i+1
�xui+1

2 f ~y(Xj) : 1 � j � n and Xj 62
children(x1 � � � xi) g.

This implies that jf0; 1gl�S(~z)j � (n�1)+(n�s)s � n�1+n2=4 � 2l=2. So jS(~z)j � 2l�2l=2 �
2l=2. Now observe that any collision free labeling equals Z~z;y for some ~z; y as above. Furthermore
by Lemma 3.6 all collision free labelings are equally likely. From this one can prove the desired
statement.

Proof of (2). The idea is very similar to the above. This time, observe that with ~z given, if we
assign an output label z 2 f0; 1gl to x1 � � � xi then the values of both Z n and Yn are fully determined
for all nodes X1; : : : ;Xn. We show as before that there is a set S(~z) of these z values for which the
determined labeling is collision free, and conclude as before using the equi-probability of collision
free labelings. The formal proof follows.

Let z 2 f0; 1gl be some �xed string. Now de�ne the labeling Z~z;z: fX1; : : : ;Xng ! f0; 1gl by:

Z~z;z(Xj) =

(
~z(Xj) if Xj 6= x1 � � � xi
z otherwise.

Let Y~z;z denote the input labeling induced by Z~z;z, and observe that it is given by

Y~z;z(Xj) =

(
~y(Xj) if Xj 62 children(x1 � � � xi)
z�xui+1

if Xj = x1 � � � xixui+1
for some 1 � u � s.

Let S(~z) be the set of all strings z such that Z~z;z is a collision free labeling. We leave to the reader
to check that z 62 S(~z) if and only if one of the following two conditions is satis�ed:

(1) Either z 2 f ~z(Xj) : 1 � j � n and Xj 6= x1 � � � xi g; or
(2) For some u 2 f1; : : : ; sg it is the case that z�xui+1

2 f ~y(Xj) : 1 � j � n and Xj 62
children(x1 � � � xi) g.

This implies that jf0; 1gl � S(~z)j � (n � 1) + (n � s)s � n � 1 + n2=4 � 2l=2. So jS(~z)j � 2l=2.
Now observe that any collision free labeling equals Z~z;z for some ~z; z as above. Furthermore by
Lemma 3.6 all collision free labelings are equally likely. From this one can prove the desired
statement.

Bounding the probability of collisions. The following lemma �xes the number n of queries
that A has made, as well as a particular view X1; : : : ;Xn ; Ẑ of A. It now makes the assumption
that the current labeling Z n is collision free; think of this fact as being known to A. Given all this,
it considers A's adding a new node Xn+1 to the tree. It says that the labeling is likely to retain its
collision freeness; that is, Z n+1 is collision free with high probability. The same technical condition
on n as in the previous lemma is required.

Note that Xn+1 is determined by X1; : : : ;Xn ; Ẑ. The value Z n+1(Xn+1) has not yet been
returned to A, and it makes sense to discuss the distribution of this value given X1; : : : ;Xn ; Ẑ.

Lemma 3.8 Let 1 � n � qm�1 and suppose n2=4 + n � 1 � 2l=2. Let X1; : : : ;Xn be a query
sequence and let Ẑ be a labeling of the border nodes of X1; : : : ;Xn. Then

Pr
h
:ColFree(Z n+1) j Viewn = (X1; : : : ;Xn ; Ẑ) ^ ColFree(Z n)

i
� 3n � 2�l ;

26

where the probability is taken over the choice of f .

Proof: We use the following notation:

Prn [�] = Pr
h
� j Viewn = (X1; : : : ;Xn ; Ẑ) ^ ColFree(Z n)

i
:

Case 1. Xn+1 is at level one.

Let Xn+1 = �x1. Note its input label is by de�nition �x1. For each t = 1; : : : ; n we claim that

Prn [Yn(Xt) = �x1] � 2 � 2�l : (14)

To see why this is true, consider two cases. First, if Xt is at level one then Prn[Yn(Xt) = �x1] = 0
by de�nition. On the other hand suppose Xt is at depth at least two. Then Xt = x1 � � � xixi+1 is
the child of some x1 � � � xi 2 fX1; : : : ;Xng. Equation 14 now follows by Part 1 of Lemma 3.7.

If �x1 62 fYn(X1); : : : ;Yn(Xn)g, then even conditioned on Viewn, Z n+1(Xn+1) will be uniformly
distributed over l-bit strings. Given this observation and Equation 14 we can bound the probability
of a collision as follows:

Prn [:ColFree(Z n+1)] � Prn [�x1 2 fYn(X1); : : : ;Yn(Xn)g] +

Prn [Z n+1(Xn+1) 2 fZ n(X1); : : : ;Z n(Xn)g j �x1 62 fYn(X1); : : : ;Yn(Xn)g]

� 2n

2l
+

n

2l
� 3n

2l
:

Case 2. Xn+1 is not at level one.

Then Xn+1 = x1 � � � xixi+1 is the child of some x1 � � � xi 2 fX1; : : : ;Xng. Let S = fX1; : : : ;Xng �
fx1 � � � xig. We �rst claim that for any Xt 2 fX1; : : : ;Xng:

Prn [Yn+1(Xn+1) = Yn(Xt)] � 2 � 2�l : (15)

To see why this is true, consider two cases. First, if Xt is a sibling of Xn+1 then

Prn [Yn+1(Xn+1) = Yn(Xt)] = 0

by de�nition. On the other hand suppose Xt is not a sibling of Xn+1. Then a collision free labeling
~z of S determines Yn(Xt). Using this and Part 2 of Lemma 3.7 we have the following: (The sum
here is over all collision free labelings ~z of S which are consistent with Ẑ.)

Prn [Yn+1(Xn+1) = Yn(Xt)]

=
P

~z Prn
h
Yn+1(Xn+1) = Yn(Xt) j Z S

n = ~z
i
� Prn

h
Z
S
n = ~z

i

=
P

~z Prn
h
Z n(x1 � � � xi) = Yn(Xt)�xi+1 j Z S

n = ~z
i
� Prn

h
Z
S
n = ~z

i

� 2

2l
�P~z Prn

h
Z
S
n = ~z

i
� 2

2l
:

Thus Equation 15 is again established.

Given Equation 15 we can bound the probability of a collision:

Prn [:ColFree(Z n+1)] � Prn [Yn+1(Xn+1) 2 fYn(X1); : : : ;Yn(Xn)g] +

27

Prn [Z n+1(Xn+1) 2 fZ n(X1); : : : ;Z n(Xn)g j Yn+1(Xn+1) 62 fYn(X1); : : : ;Yn(Xn)g]

� 2n

2l
+

n

2l
� 3n

2l
:

This completes the proof of Lemma 3.8.

Concluding the proof. We need to show that

Advdist
CBC

m-Randl!l;Randml
!l (A) � 1:5 � q

2m2

2l
:

Let Pr1 [�] denote the probability when A's oracle g is chosen via f
R Randl!l ; g f (m),

and let CF = ColFree(Z qm�1). Let Pr2 [�] denote the probability when A's oracle g is chosen via

g
R Randml!l. We claim that

Pr1 [A
g = 1 j :CF] = Pr2 [A

g = 1] : (16)

This is true because as long as the current labeling Z n which A has is collision-free, the value of
a border node returned to A by g = f (m) is a random l-bit string distributed independently of
anything else. Thus the distribution on A's view is the same as if A were replied to by a random
function g from Randml!l. Now using Equation (16) we have

Advdist
CBC

m-Randl!l;Randml
!l (A)

= Pr1 [A
g = 1]� Pr2 [A

g = 1]

= Pr1 [A
g = 1 j CF] � Pr1 [CF] + Pr1 [A

g = 1 j :CF] � Pr1 [:CF]� Pr2 [A
g = 1]

= Pr1 [A
g = 1 j CF] � Pr1 [CF] + Pr2 [A

g = 1] � Pr1 [:CF]� Pr2 [A
g = 1]

� Pr1 [CF] + Pr2 [A
g = 1] � (Pr1 [:CF]� 1)

� Pr1 [CF]

� Pqm�2

n=1
Pr1 [:ColFree(Z n+1) j ColFree(Z n)]

� 3(qm� 2)(qm� 1) � 2�l�1 :

The last inequality follows from Lemma 3.8, which can be applied since qm � 2(l+1)=2 implies
n2=4 + n� 1 � 2l=2 for all n = 1; : : : ; qm� 2. This concludes the proof.

4 Security of CBC as a MAC

The previous section showed that the CBC-MAC of a PRF is itself a PRF. Recall our original
goal was to assess the security of the CBC-MAC as a MAC. In other words, we want to assess the
resistance to forgery rather than the indistinguishability with respect to random functions. This is
easily done given what we now know. Below we begin by stating the corresponding theorem. Then
we go on to ask whether

28

4.1 Upper bounding the MAC insecurity of CBC

The following theorem bounds the MAC insecurity of CBCm-F (as de�ned in Section 2.4) in terms
of the insecurity of F as a PRF or PRP, thereby saying that if F is a PRF or PRP then its
CBC-MAC is a secure MAC.

Theorem 4.1 [CBC Theorem: Security as a MAC] Let l;m � 1 and q; t � 1 be integers
such that qm � 2(l+1)=2. Let F : Keys(F)� f0; 1gl ! f0; 1gl be a family of functions. Then

Advmac

CBC
m-F (q; t) � Adv

prf

F (q0; t0) +
3q2m2 + 2

2l+1

� Adv
prp

F (q0; t0) +
2q2m2 + 1

2l

where q0 = mq and t0 = t+O(mql).

Once again the O-notation conceals a small model-dependent constant.

Proof: Applying �rst Proposition 2.7 and then Theorem 3.2 we get

Advmac

CBC
m-F (q; t) � Adv

prf

CBC
m-F (q; t+O(ml)) +

1

2l

� Adv
prf

F (q0; t0) + 1:5 � q
2m2

2l
+

1

2l
: (17)

Simplifying the right hand side yields the �rst inequality of the theorem. Now we continue, noting
that

Advmac

CBC
m-F (q; t) � Adv

prf

F (q0; t0) +
3q2m2 + 2

2l+1

� Adv
prp

F (q0; t0) +
3q2m2 + 2

2l+1
+
q0(q0 � 1)

2l+1

� Adv
prp

F (q0; t0) +
3q2m2 + 2

2l+1
+
q2m2

2l+1
:

Simplifying the right hand side yields the second inequality of the theorem.

Numerical example (continued). Suppose we use the CBC MAC where the underlying block
cipher is the AES algorithm (so l = 128). Suppose some scientist �nds a practical method which
has a 1% chance of forging messages after having asked for the MACs of q = 230 messages, each
16 KBytes long. Then there is some equally practical method|it's running time is essentially that
of forging algorithm|which has advantage of at least 0:01 � 7:2 � 10�15 � 1% at di�erentiating
AES values on 240 points from as many random distinct points.

Discussion. Our approach to proving the security of the CBC-MAC as a MAC has been to
prove something stronger, namely that it is a PRF. This works because any PRF is a MAC
(Proposition 2.7). However the converse is not true: not every MAC is a PRF. Indeed, indis-
tinguishability from a random function is a much stronger property than unforgeability. This raises

29

the question of whether better results on the unforgeability of the CBC-MAC could be obtained by
directly trying to analyze it as a MAC. In other words, perhaps bounds on Advmac

CBC
m-F (q; t) much

better than those of Theorem 4.1 could be obtained via an analytical approach di�erent from the
one we have taken.

There is room for improvement via alternative approaches. In the next subsection we show that
the quadratic dependence on the number of queries q in the insecurity function of the CBC-MAC
is necessary. Thus at best one might hope to reduce the dependency on the number m of blocks in
the messages.

4.2 Birthday attack on the CBC MAC

The basic idea behind the attack, due to Preneel and Van Oorschott [19] and (independently) to
Krawczyk, is that internal collisions can be exploited for forgery. Here we use this idea to present
an attack on the CBC-MAC in the case that the underlying family is a family of permutations.
(We focus on this case because in practice the CBC-MAC is usually based on a block cipher.)

The attacks presented in [19] are analyzed assuming the underlying functions are random,
meaning the family to which the CBC-MAC transform is applied is Randl!l or Perml. Here we do
not make such an assumption. The attack we present works for any family of permutations. The
randomness in our attack (which is the source of birthday collisions) comes from coin tosses of the
forger only. This makes the attack more general.

Proposition 4.2 Let l;m; q be integers such that 1 � q � 2(l+1)=2 and m � 2. Let F : Keys(F)�
f0; 1gl ! f0; 1gl be a family of permutations. Then there is a forger A making q+1 oracle queries,
running for time O(lmq log q) and achieving

Advmac

CBC
m-F (A) � 0:316 � q(q � 1)

2l
:

As a consequence for q � 2

Advmac

CBC
m-F (q; t) � 0:316 � (q � 1)(q � 2)

2l
:

The time assessment here puts the cost of an oracle call at one unit.
Comparing the above to Theorem 4.1 we see that our upper bound is tight to within a factor

of the square of the number of message blocks.
We now proceed to the proof. We begin with a couple of lemmas. The �rst lemma considers a

slight variant of the usual birthday problem and shows that the \collision probability" is still the
same as that of the usual birthday problem.

Lemma 4.3 Let l; q be integers such that 1 � q � 2(l+1)=2. Fix b1; : : : ; bq 2 f0; 1gl . Then

Pr
h
r1; : : : ; rq

R f0; 1gl : 9 i; j such that i 6= j and bi�ri = bj�rj
i
� 0:316 � q(q � 1)

2l
:

Proof: This is just like throwing q balls into N = 2l bins and lower bounding the collision proba-
bility, except that things are \shifted" a bit: the bin assigned to the i-th ball is ri�bi rather than
ri as we would usually imagine. But with bi �xed, if ri is uniformly distributed, so is ri�bi. So the
probabilities are the same as in the standard birthday problem of Appendix A.

30

The �rst part of the following lemma states an obvious property of the CBC-MAC transform. The
item of real interest is the second part of the lemma, which says that in the case where the underlying
function is a permutation, the CBC-MAC transform has the property that output collisions occur
if and only if input collisions occur. This is crucial to the attack we will present later.

Lemma 4.4 Let l;m � 2 be integers and f : f0; 1gl ! f0; 1gl a function. Suppose �1 � � ��m and
�1 � � � �m in f0; 1gml are such that �k = �k for k = 3; : : : ;m. Then

f(�1)��2 = f(�1)��2) f (m)(�1 � � ��m) = f (m)(�1 � � � �m) :

If f is a permutation then, in addition, the converse is true:

f (m)(�1 � � ��m) = f (m)(�1 � � � �m)) f(�1)��2 = f(�1)��2 :

Proof: The �rst part follows from the de�nition of f (m). For the second part let f�1 denote the
inverse of the permutation f . The CBC-MAC computation is easily unraveled using f�1. Thus the
procedure

ym f (m)(�1 � � ��m) ; For k = m downto 3 do yk�1 f�1(yk)��k End For ; Return f�1(y2)

returns f(�1)��2, while the procedure

ym f (m)(�1 � � � �m) ; For k = m downto 3 do yk�1 f�1(yk)��k End For ; Return f�1(y2)

returns f(�1)��2. But the procedures have the same value of ym by assumption and we know that
�k = �k for k = 3; : : : ;m, so the procedures return the same thing.

Proof of Proposition 4.2: Before presenting the forger let us discuss the idea.

The forger A has an oracle g = f (m) where f is an instance of F . The strategy of the forger is
to make q queries all of which agree in the last m � 2 blocks. The �rst blocks of these queries
are all distinct but �xed. The second blocks, however, are random and independent across the
queries. Denoting the �rst block of query n by an and the second block as rn, the forger hopes to
have i 6= j such that f(ai)�ri = f(aj)�rj. The probability of this happening is lower bounded by
Lemma 4.3, but simply knowing the event happens with some probability is not enough; the forger
needs to detect its happening. Lemma 4.4 enables us to say that this internal collision happens
i� the output MAC values for these queries are equal. (This is true because f is a permutation.)
We then observe that if the second blocks of the two colliding queries are modi�ed by the xor to
both of some value a, the resulting queries still collide. The forger can thus forge by modifying the
second blocks in this way, obtaining the MAC of one of the modi�ed queries using the second, and
outputting it as the MAC of the second modi�ed query.

The forger is presented in detail below. It makes use of a subroutine FindCol that given a sequence
�1; : : : ; �q of values returns a pair (i; j) such that �i = �j if such a pair exists, and otherwise returns
(0; 0).

31

Forger Ag

Let a1; : : : ; aq be distinct l-bit strings

For i = 1; : : : ; q do ri
R f0; 1gl

For i = 1; : : : ; q do
xi;1 ai ; xi;2 ri
For k = 3; : : : ;m do xi;k 0l

Xi xi;1 : : : xi;m
�i g(Xi)

End For
(i; j) FindCol(�1; : : : ; �q)
If (i; j) = (0; 0) then abort
Else

Let a be any l-bit string di�erent from 0l

x0i;2 xi;2�a ; x0j;2 xj;2�a
X 0
i xi;1x

0
i;2xi;3 � � � xi;m ; X 0

j xj;1x
0
j;2xj;3 � � � xj;m

�0i g(X 0
i)

Return (X 0
j ; �

0
i)

End If

To estimate the probability of success, suppose g = f (m) where f is an instance of F . Let (i; j) be
the pair of values returned by the FindCol subroutine. Assume (i; j) 6= (0; 0). Then we know that

f (m)(xi;1 � � � xi;m) = f (m)(xj;1 � � � xj;m) :
By assumption f is a permutation and by design xi;k = xj;k for k = 3; : : : ;m. The second part of
Lemma 4.4 then implies that f(ai)�ri = f(aj)�rj. Adding a to both sides we get f(ai)�(ri�a) =
f(aj)�(rj�a). In other words, f(ai)�x0i;2 = f(aj)�x0j;2. The �rst part of Lemma 4.4 then implies

that f (m)(X 0
i) = f (m)(X 0

j). Thus �0i is a correct MAC of X 0
j . Furthermore we claim that X 0

j is
new, meaning was not queried of the g oracle. Since a1; : : : ; aq are distinct, the only thing we have
to worry about is that X 0

j = Xj , but this is ruled out because a 6= 0l.

We have just argued that if the FindCol subroutine returns (i; j) 6= (0; 0) then the forger is success-
ful, so the success probability is the probability that (i; j) 6= (0; 0). This happens whenever here
is a collision amongst the q values �1; : : : ; �q. Lemma 4.4 tells us however that there is a collision
in these values if and only if there is a collision amongst the q values f(a1)�r1; : : : ; f(aq)�rq. The
probability is over the random choices of r1; : : : ; rq. By Lemma 4.3 the probability of the latter is
lower bounded by the quantity claimed in the Proposition. We conclude the theorem by noting
that, with a simple implementation of FindCol (say using a balanced binary search tree scheme)
the running time is as claimed.

5 Length Variability

For simplicity, let us assume throughout this section that strings to be authenticated have length
which is a multiple of l bits. This restriction is easy to dispense with by using simple and well-
known padding methods: for example, always append a \1" and then append the minimal number
of 0's to make the string a multiple of l bits.

32

The CBC MAC doesn't handle variable-length inputs. The CBC MAC does not directly
give a method to authenticate messages of variable input lengths. In fact, it is easy to \break" the
CBC MAC construction if the length of strings is allowed to vary (this fact is well-known). As an

example, if an adversary requests f
(1)

a of b, obtaining tb, and then requests f
(1)

a (tb), obtaining ttb , it

can then compute the MAC f
(2)

a (bk0) = ttb for bk0|a string for which it has not asked the MA.C

Appending the length doesn't work. One possible attempt to authenticate messages of
varying lengths is to append to each string x = x1 � � � xm the number m, properly encoded as
the �nal l-bit block, and then CBC MAC the resulting string m + 1 blocks. (Of course this
imposes a restriction that m < 2l, not likely to be a serious concern.) We de�ne f�a (x1 � � � xm) =
f
(m+1)
a (x1 � � � xm m).
We show that f� is not a secure MAC. Take arbitrary l-bit words b, b0 and c, where b 6= b0. It

is easy to check that given

(1) tb = f�(b),

(2) tb0 = f�(b0), and

(3) tb1c = f�(bk1kc)
the adversary has in hand f�(b0k1ktb�tb0�c) |the authentication tag of a string she has not asked
about before|since this is precisely tb1c.

Better methods. Despite the failure of the above method there are many suitable ways to obtain
a PRF that is good on variable input lengths. We mention three. In each, let F be a �nite function
family from and to l-bit strings. Let x = x1 � � � xm be the message to which we will apply fa:

(1) Input-length key separation. Set f�a (x) = f
(m)

am (x), where am = fa(m).

(2) Length-prepending. Set f�a (x) = f
(m+1)
a (mkx).

(3) Encrypt last block. Set f�a1a2(x) = fa2(f
(m)

a1 (x)).

The last method appears in an informational Annex of [13], and has now been analyzed by Petrank
and Racko� [18]. It is the most attractive method of the bunch, since the length of x is not needed
until the end of the computation, facilitating on-line MAC computation. One additional method
was mentioned in the proceedings version of this paper (the \two-step MAC," [4, p. 352]), but
Petrank and Racko� have pointed out that this method does not work [18].

Acknowledgments

We thank Uri Feige and Moni Naor for their assistance in the proof of Theorem 3.1, and also for
comments on the paper.

References

[1] J. An and M. Bellare, Constructing VIL-MACs from FIL-MACs: Message authentication un-
der weakened assumptions, Advances in Cryptology { CRYPTO '99, Springer-Verlag, Lecture
Notes in Computer Science, Vol. ??, M. Wiener, Ed., pp. ??{??, 1999.

33

[2] ANSI X9.9, American National Standard for Financial Institution Message Authentication
(Wholesale), American Bankers Association, 1981. Revised 1986.

[3] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A concrete security treatment of symmetric
encryption: Analysis of the DES modes of operation, Proceedings of the 38th Symposium on

Foundations of Computer Science, IEEE, 1997.

[4] M. Bellare, J. Kilian and P. Rogaway, The security of cipher block chaining, Advances in

Cryptology { CRYPTO '94, Lecture Notes in Computer Science Vol. 839, Springer-Verlag,
Y. Desmedt, Ed., pp. 340{358, 1994.

[5] M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentication",
Advances in Cryptology { CRYPTO '96, Springer-Verlag, Lecture Notes in Computer Science,
Vol. 1109, N. Koblitz, Ed., pp. 1{15, 1996.

[6] M. Bellare, R. Gu�erin and P. Rogaway, XOR MACs: New methods for message authentication
using �nite pseudorandom functions, Advances in Cryptology { CRYPTO '95, Lecture Notes
in Computer Science, Vol. 963, Springer-Verlag, D. Coppersmith, Ed., pp. 15{28, 1995.

[7] M. Bellare and P. Rogaway, Entity authentication and key distribution, Advances in Cryptol-

ogy { CRYPTO '93, Lecture Notes in Computer Science, Vol. 773, Springer-Verlag, D. Stinson,
Ed., pp. 232{249, 1993.

[8] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva and M. Yung, Systematic de-
sign of two-party authentication protocols, Advances in Cryptology { Crypto 91 Proceedings,
Lecture Notes in Computer Science Vol. 576, J. Feigenbaum ed., Springer-Verlag, 1991.

[9] J. Black, S. Halevi, H. Krawczyk, T. Krovetz and P. Rogaway, UMAC: Fast and secure message
authentication, Advances in Cryptology { CRYPTO '99 Lecture Notes in Computer Science,
Vol. ??, Springer-Verlag, M. Wiener., Ed., pp ??{??, 1999.

[10] O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions, Journal of
the ACM, Vol. 33, No. 4, 210{217, (1986).

[11] O. Goldreich, S. Goldwasser and S. Micali, On the cryptographic applications of random
functions, Advances in Cryptology { Crypto 84 Proceedings, Lecture Notes in Computer
Science Vol. 196, R. Blakely ed., Springer-Verlag, 1984.

[12] S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against adaptive
chosen-message attacks, SIAM Journal of Computing, 17(2):281{308, April 1988.

[13] ISO/IEC 9797, Data cryptographic techniques { Data integrity mechanism using a crypto-
graphic check function employing a block cipher algorithm, 1989.

[14] L. Knudsen, A chosen text attack on CBC-MAC, Electronics Letters 33(1), 1997, pp. 48{49.

[15] M. Luby and C. Racko�, How to construct pseudorandom permutations from pseudorandom
functions, SIAM J. Computation, Vol. 17, No. 2, April 1988.

34

[16] M. Luby and C. Racko�, A study of password security, Advances in Cryptology { Crypto 87
Proceedings, Lecture Notes in Computer Science Vol. 293, C. Pomerance ed., Springer-Verlag,
1987.

[17] K. Ohta and M. Matsui, Di�erential attack on message authentication codes, Advances in

Cryptology { Crypto 93 Proceedings, Lecture Notes in Computer Science Vol. 773, D. Stinson
ed., Springer-Verlag, 1993.

[18] E. Petrank and C Racko�, CBC MAC for real-time data sources, manuscript, 1997.

[19] B. Preneel and P. van Oorschot, MDx-MAC and building fast MACs from hash functions, Ad-
vances in Cryptology { CRYPTO '95, Lecture Notes in Computer Science Vol. 963, Springer-
Verlag, D. Coppersmith, Ed., pp. 1{14, 1995.

[20] S. Stubblebine and V. Gligor, On message integrity in cryptographic protocols, Proceedings of
the 1992 IEEE Computer Society Symposium on Research in Security and Privacy. May 1992.

[21] M. Wegman and L. Carter, New hash functions and their use in authentication and set equality,
J. of Computer and System Sciences 22, 265{279 (1981).

A Birthday Bounds

Many of our estimates require precise bounds on the birthday probabilities which for completeness
we derive here.

The setting is that we have q balls. View them as numbered, 1; : : : ; q. We also have N bins,
where N � q. We throw the balls at random into the bins, one by one, beginning with ball 1. At
random means that each ball is equally likely to land in any of the N bins, and the probabilities
for all the balls are independent. A collision is said to occur if some bin ends up containing at least
two balls. We are interested in C(N; q), the probability of a collision.

The birthday phenomenon takes its name from the case when N = 365, whence we are asking
what is the chance that, in a group of q people, there are two people with the same birthday,
assuming birthdays are randomly and independently distributed over the 365 days of the year. It
turns out that when q hits

p
365 � 19:1 the chance of a collision is already quite high; for example

at q = 20 the chance of a collision is at least 0:328. The following gives upper and lower bounds
on this probability.

Proposition A.1 Let C(N; q) denote the probability of at least one collision when we throw q � 1
balls at random into N � q buckets. Then

C(N; q) � q(q � 1)

2N
:

Also

C(N; q) � 1� e�q(q�1)=2N ;

and for 1 � q �
p
2N

C(N; q) � 0:316 � q(q � 1)

N
:

35

Proof of Proposition A.1: Let Ci be the event that the i-th ball collides with one of the previous
ones. Then Pr[Ci] is at most (i � 1)=N , since when the i-th ball is thrown in, there are at most
i� 1 di�erent occupied bins and the i-th ball is equally likely to land in any of them. Now

C(N; q) = Pr[C1 _ C2 _ � � � _ Cq]

� Pr[C1] + Pr[C2] + � � �+ Pr[Cq]

� 0

N
+

1

N
+ � � � + q � 1

N

=
q(q � 1)

2N
:

This proves the upper bound. For the lower bound we let Di be the event that there is no collision
after having thrown in the i-th ball. If there is no collision after throwing in i balls then they must
all be occupying di�erent slots, so the probability of no collision upon throwing in the (i + 1)-st
ball is exactly (N � i)=N . That is,

Pr [Di+1 j Di] =
N � i

N
= 1� i

N
:

Also note Pr[D1] = 1. The probability of no collision at the end of the game can now be computed
via

1� C(N; q) = Pr[Dq]

= Pr [Dq j Dq�1] � Pr[Dq�1]

...
...

=
q�1Y
i=1

Pr [Di+1 j Di]

=
q�1Y
i=1

�
1� i

N

�
:

Note that i=N � 1. So we can use the inequality 1�x � e�x for each term of the above expression.
This means the above is not more than

q�1Y
i=1

e�i=N = e�1=N�2=N�����(q�1)=N = e�q(q�1)=2N :

Putting all this together we get

C(N; q) � 1� e�q(q�1)=2N ;

which is the second inequality in Proposition A.1. Finally, to get the last inequality in the theorem
statement, we we know q(q� 1)=2N � 1 because q �

p
2N , so we can use the inequality 1� e�x �

(1� e�1)x to get

C(N; q) �
�
1� 1

e

�
� q(q � 1)

2N
:

Noting that (1� 1=e)=2 > 0:316 completes the proof.

36

