ニュース・イベント

プレスリリース

LiNMC電極を高安定化するホウ素系電解液の開発

LiNMC電極を高安定化するホウ素系電解液の開発

ポイント

  • リチウムイオン二次電池の汎用電解液にメシチルジメトキシボラン(MDMB)を加えた3成分系電解液は非常に高いリチウムイオン輸率を示した(エチレンカーボネート(EC):ジエチレンカーボネート(DEC):メシチルジメトキシボラン(MDMB)=1:1:1(v/v/v))。
  • ホウ素を含む電解液の使用により正極上にホウ素を含む安定性の高い正極電解質界面(CEI)が形成され、正極の大幅な安定化につながった。
  • XPS測定により正極電解質界面(CEI)へのホウ素導入が確認された。ホウ素導入の結果、電荷移動界面抵抗の顕著な低減及び電極反応の活性化エネルギーの低下につながった。
  • 電解液中のホウ素成分は系内のHFをB-F結合形成によりトラップしており、これも正極の安定化の要因となっている。
  • エチレンカーボネート:ジエチレンカーボネート:メシチルジメトキシボラン=1:1:1(v/v/v)系では溶媒層(solvation sheath)とリチウムイオンとの相互作用がMDMBを含有しない系よりも弱まっていることがMaterials Studioを用いた計算により示唆され、アニオントラップ効果と相まってリチウムイオン輸率を向上させていると考えられる。
 北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)物質化学フロンティア研究領域の松見紀佳教授、Liu Zhaohan大学院生(博士後期課程)、Amarshi Patra研究員は、LiNMC正極を安定化できるホウ素系電解液の開発に成功した。

【研究背景と内容】

 リチウムイオン二次電池1においては、高エネルギー密度の向上を目的として高電圧化が可能なLiNMC系正極が活発に研究されている。LiNMCを安定化させるための様々な添加剤が検討されているが、本研究では電解液設計によりLiNMC系正極を安定化させるアプローチを試み、その有効性を見出した。LiNMCの安定化の手法として、ホウ素系添加剤を活用する試みはこれまで国外グループにおいて検討されていたものの、LiBOBを添加剤とした系では電解液中のHF(フッ酸)の捕捉において有効性が認められたものの、正極電解質界面(CEI)へのホウ素導入は認められていなかった。本研究においては、添加剤と比較して大幅に多い分量の電解液成分として液状のホウ素化合物(MDMB)を用い、HF捕捉のみならず、顕著なCEIへのホウ素導入及び界面抵抗の低減、電極反応の活性化エネルギー低下、それらの結果としての正極の安定性の大幅な向上につながった。

 本研究では、エチレンカーボネート:ジエチレンカーボネート:メシチルジメトキシボラン=1:1:0(v/v/v)系(110)、1:1:1(v/v/v)系(111)、1:1:2(v/v/v)系(112)のそれぞれを電解液とした系について検討を行った。
 Materials Studioによる計算の結果(図1)、各系におけるリチウムイオンと溶媒層との相互作用のエネルギーは110系においてEint=-156.67 kJ/mol、111系において-147.97 kJ/mol、112系において-149.97 kJ/molとそれぞれ算出された。MDMBを電解液成分として含む系においてはEC/DEC系と比較してリチウムイオンと溶媒層との相互作用が弱まっていることが示唆された。したがって、MDMB含有系においては脱溶媒和の活性化エネルギーの顕著な低下が期待される。
 各電解液のリチウムイオン輸率を測定したところ(図1)、MDMBを含む系においては、EC/DEC (110)の0.41に対して0.93 (111)、0.86(112)と大幅に高い値を示し、ホウ素によるアニオントラップ効果に加えて前述のリチウムイオン―溶媒層相互作用の低下が影響を与えていると考えられる。
 それぞれの電解液系を用いてLiNMC111を用いて正極型ハーフセルを構築した。サイクリックボルタモグラム2を図2に示す。EC/DEC系(110)においては掃引速度が向上すると電極反応の過電圧が上昇するが、MDMBを含む電解液(111)においては顕著な変化は見られず、高いリチウムイオン輸率により系内の電荷の分極が抑制されている効果によると考えられる。各充放電レートにおける充放電特性を検討したところ、111系電解液において最も優れた特性が観測された(図2)。また、電池セルのインピーダンス測定及びスペクトルの等価回路フィッティングにより、電荷移動界面抵抗の温度依存性に基づいた電荷移動プロセスの活性化エネルギーを算出したところ、111系において最も低い活性化エネルギー(30.5 kJ/mol)を観測した(図2)。結果として、長期サイクル試験においても111系が最も優れた放電容量を示すに至った(図3)。
 充放電後の正極のXPS測定を行ったところ、MDMBを含んだ電解液を用いた系においてはいずれもB1sスペクトルにおいて192.5 eV(B-O)、194.0 eV(B-F)のピークが観測され、正極電解質界面(CEI)がホウ素化されていることが確認された(図4)。B-F結合の形成は、導入されたホウ素がHFを捕捉したことを示唆している。電極界面におけるB-Oの導入は、ホウ素―アニオン相互作用により界面における塩解離を促す役割が想定され、電荷移動界面抵抗の低減に寄与していると考えられる。
 以上のように、MDMBを電解液成分とすることにより、従来のLiBOB添加剤を用いた正極の安定化手法と比較すると、直接的にCEIにホウ素導入が可能である点において優位性が顕著であり、今後一般化可能な正極安定化プロトコルとしての展開が期待できる。

 本成果は、ACS Applied Energy Materials(米国化学会)オンライン版に2025年3月3日(英国時間)に掲載された。

【今後の展開】

 本電解液系においてはHFの捕捉、リチウムイオン輸率の向上、界面抵抗の低減、電極反応の活性化エネルギーの低下などの多様なメカニズムにより正極が安定化されている。
 今後は、企業との共同研究を通して将来的な社会実装を目指す。
 本電解液系と既存の正極安定化剤などとの相乗効果も期待され、更なる研究展開の端緒となると考えられる。

pr20250321-11.jpg

図1  (a) 電解液系110, 111, 112のリチウムイオン輸率 (b) 30-60 ℃ における各系のイオン伝導度の温度依存性(c) 298Kにおける電解質系のモデル(リチウムイオンあり、上段;リチウムイオンなし、下段)

pr20250321-12.png

図2 2.8V-4.2 Vにおける各電解液(110,111, 112)を用いた正極型ハーフセル3のサイクリックボルタモグラム (a) 0.1 and (b) 0.2 mV s−1. (c) レート特性の検討結果(d) 異なる電解液系のEa (電荷移動の活性化エネルギー)の比較

pr20250321-13.png

図3 各電解液系110系、111系及び112系における長期充放電サイクル特性(正極型ハーフセル、0.5C)

pr20250321-14.png

図4 各電解液系111及び112における充放電後の各正極のXPS(B1s)スペクトル

【論文情報】

雑誌名 ACS Applied Energy Materials
題目 A boron-containing ternary electrolyte for excellent Li-ion transference and
stabilization of LiNMC based cells
著者 Zhaohan Liu, Amarshi Patra and Noriyoshi Matsumi*
掲載日 2025年3月3日
DOI https://doi.org/10.1021/acsaem.4c02806

【用語説明】

1. リチウムイオン二次電池:
電解質中のリチウムイオンが電気伝導を担う二次電池。従来型のニッケル水素型二次電池と比較して高電圧、高密度であり、各種ポータブルデバイスや環境対応自動車に適用されている。
2. サイクリックボルタモグラム:
電気化学分野における汎用的な測定手法である、電極電位を直線的に掃引し、系内における酸化・還元による応答電流を測定する手法(サイクリックボルタンメトリー)により、得られるプロファイルのこと。
2. 正極型ハーフセル:
リチウムイオン二次電池の場合には、正極/電解質/Liの構成からなる半電池を意味する。

令和7年3月21日

PAGETOP