ニュース・イベント

プレスリリース

光電極の反応メカニズムを解明 ~光の強度変化で見えた新たな課題と可能性~

北陸先端科学技術大学院大学 東京都立大学 東京科学大学 Swansea University
国立大学法人北陸先端科学技術大学院大学
東京都公立大学法人 東京都立大学
国立大学法人東京科学大学
Swansea University

光電極の反応メカニズムを解明
~光の強度変化で見えた新たな課題と可能性~

【ポイント】

  • 周波数データの先進的解析により、水分解反応中の電子の動きを時間領域で可視化
  • 電子と正孔の再結合過程を3種に分類し、電場と光の強さで変化するメカニズムを解明
  • 反応のボトルネックとなる遅い反応過程を発見し、水分解反応の効率低下要因を特定
 光電気化学的な水分解は、クリーンな水素を生成する有望な技術ですが、その効率は電子と正孔の再結合によって大きく制限されています。この課題を克服するためには、電荷の分離と移動の特性を詳細に分析し、再結合のメカニズムを明確にすることが不可欠です。
 今回、北陸先端科学技術大学院大学(学長・寺野稔、石川県能美市)張葉平特別研究員(日本学術振興会特別研究員PD)、東京都立大学(学長・大橋隆哉、東京都八王子市)都市環境科学研究科天野史章教授、Dr. Surya Pratap Singh、東京科学大学(旧・東京工業大学、理事長・大竹尚登、東京都目黒区)物質理工学院材料系宮内雅浩教授、山口晃助教、Dr. Yue Yang、Imperial College London (United Kingdom) Prof. Salvador Eslava、Ms. Mengya Yang、Dr. Junyi Cui、Prof. James R Durrant (Swansea University, United Kingdomと兼務)、Dr. Daniele Benettiの共同研究チームは、「光強度変調光電流分光法(IMPS)」と「緩和時間分布(DRT)解析」を組み合わせた新たな分析手法を適用し、光電極の動作環境下でのその場観察を行いました。その結果、これまで一つの現象として捉えられていた電子と正孔の再結合が、実は異なる3つの過程に分かれていることを明らかにしました。さらに、反応速度が遅い領域に未知の"サテライトピーク"が存在することを発見し、これが電子移動や反応のボトルネックとなる可能性を示しました。本研究の成果は、光触媒や光電極材料の効率的な設計につながるものであり、2025年2月22日付けで「Journal of the American Chemical Society」誌に掲載されました。

【研究の背景】

 光触媒は、太陽光というクリーンで無尽蔵なエネルギーを利用して水素を生成する技術として注目されています。しかし、実用化に向けた大きな課題のひとつが、「電子と正孔の再結合」です。これは、光によって励起された電子が、化学反応に利用される前に元の状態に戻ってしまう現象で、エネルギー変換の効率を大きく低下させます。従来の研究では、この再結合がどのように起こるのかを詳細に分析することが難しく、単純化したモデルで説明されることがほとんどでした。そこで、研究チームは、再結合過程には複数のメカニズムが混在する可能性があると考え、周波数ごとの電流の応答を時間ごとの変化として"見える化"する解析手法を適用することで、光照射下での電子や正孔の動的な過程を捉えその詳細を明らかにしました。

【研究の詳細】

 本研究では、光触媒として広く研究されている酸化チタン(TiO2)を光電極の材料に用いて、水分解反応の動作環境における電子の動きを詳細に分析しました。まず、「光強度変調光電流分光法(IMPS)」を用いて、光の強さを周期的に変化させた際の電流の応答を測定し、光触媒内でどのようなプロセスが起こっているかを周波数ごとに測定しました。次に、「緩和時間分布(DRT)解析」を適用し、得られたデータを時間領域に変換することで、これまで1つのプロセスと考えられていた再結合過程が、実際には複数のプロセスに分かれていることを"見える化"することに成功しました。異なる光強度でIMPSを測定した結果、次の3つの異なる電位領域が存在することがわかりました。
(1) 高電位領域:光強度に依存せず、安定した電流応答を示す
(2) 中電位領域:光強度に強く影響される再結合プロセスが支配的
(3) 低電位領域:逆電子移動(BER)が発生し、光電流が抑制される

pr20250225-11.png

図 本研究で明らかにした、3つの電位領域における光触媒プロセスの緩和時間分布、およびそれに対応する半導体電極のバンド曲がりモデル。電位領域ごとのバンド構造をもとに、異なる3種の再結合プロセス(OPR、EHR、BER)を分類することに成功した。

 さらに、これらのメカニズムを半導体電極におけるバンド曲がりモデルと対応付けることで、これまで一括りにされていた「バルク再結合」を「過剰な光侵入による再結合(OPR)」と「過剰な正孔による再結合(EHR)」いう2種類に分類し、それぞれの特徴を明らかにしました。また、これまで観測されていなかった遅い反応過程が"サテライトピーク"として高電位領域に現れることを確認しました。このピークは光強度や反応条件によって変化し、特に表面の正孔密度によって再結合経路と競合する可能性が示唆されました。

【今後の展望】

 本研究の成果により、光電気化学的な水分解反応のボトルネックとなる反応過程をより正確に特定できるようになりました。これにより、光触媒や半導体電極のさらなる高効率化に向けた新たな材料設計の指針が示されます。今後は、異なる材料や反応環境での適用を進めることで、実用化に向けた最適な設計戦略を提案していく予定です。光触媒および光電気化学的な水分解の性能向上により、水素エネルギーの普及が加速し、カーボンニュートラル社会の実現に貢献することが期待されます。

【論文情報】

掲載誌 Journal of the American Chemical Society
論文題目 Analysis of TiO2 Photoanode Process Using Intensity Modulated Photocurrent Spectroscopy and Distribution of Relaxation Times
著者 Yohei Cho, Mengya Yang, Junyi Cui, Yue Yang, Surya Pratap Singh, Salvador Eslava, Daniele Benetti, James R Durrant, Akira Yamaguchi, Masahiro Miyauchi, and Fumiaki Amano
掲載日 2025年2月22日
DOI https://doi.org/10.1021/jacs.4c17345

【研究資金】

 本研究は、日本学術振興会 科学研究費助成事業「JP20H02525, JP21J21388, JP22KJ1272, JP23K26735, JP23K17953, JP24KJ1201, JP24H00463」、東京都立大学、東京工業大学物質・情報卓越教育院、英国工学・物理科学研究会議(EPSRC, Grant EP/S030727/1)、Imperial College Londonからの支援を受けたものです。

【受賞】

 本研究は、光エネルギーの化学変換と太陽光エネルギーの有効利用、および人工光合成をテーマとする国際会議でOral Presentation Awardを受賞しています。

受賞者 :Dr. Yohei Cho, JAIST
題目  :Analysis of Photoanodic Processes Using Intensity Modulated Photocurrent Spectroscopy (IMPS) and Distribution of Relaxation Time (DRT)
国際会議:24th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-24)/International Conference on Artificial Photosynthesis-2024 (ICARP2024), Hiroshima, Japan, August 2024

【用語説明】

1. 再結合:
 光触媒や半導体電極が光を吸収すると電子と正孔(電子の抜けた穴)が生成される。これらの電荷が化学反応に利用される前に再び結びついて消失してしまう現象。再結合が起こると、エネルギーが熱や光として失われ、反応効率が低下するため、光触媒や半導体電極の性能を向上させるには、再結合を抑える必要がある。

2. 光強度変調光電流分光法(IMPS):Intensity Modulated Photocurrent Spectroscopy
 光の強度をわずかに変化させ、そのときの周期的な電流応答を周波数ごとに測定することで、半導体電極内部の電子の動きを解析する手法。動作環境下の光電極をそのまま観察できる「オペランド分光法」の一種。一定の電位を保ったまま測定できるため、半導体内部の電場変動による測定誤差が少なく、光強度や電位の影響を精度よく観察できる。

3. 緩和時間分布(DRT)解析:Distribution of Relaxation Times
 周波数領域のデータを時間領域に変換することで、どの時間スケールで反応や再結合が起こっているかを特定する解析手法。事前に複雑な数理モデルを使う必要がなく、複数の反応過程を分離して評価できる。それぞれの反応過程がどのくらいの時間で進行するかを示す時定数を「緩和時間」と呼ぶ。

4. サテライトピーク:
 DRT解析の結果として、主な反応プロセスであるメインピークとは別に観測された新たなピーク。今回の研究では、IMPSの解析で初めてサテライトピークの存在を明確に捉え、それが再結合と競合する要因になりうることを明らかにした。

5. バンド曲がり:
 半導体電極の表面付近において、電荷の分布によってエネルギーバンド(電子が存在できるエネルギー準位の範囲)が曲がる現象。これは、外部から電場が加わったり、半導体が電解質と接触したりすることで生じる。バンド曲がりの状態によって、電子や正孔がどのように移動し、化学反応に寄与するかが決まる。本研究では、電位によってバンド曲がりを精密に制御することで、各状態に対応する再結合プロセスを明らかにした。

令和7年2月25日

PAGETOP