ニュース・イベント

プレスリリース

ナトリウムイオン2次電池に高性能・高耐久性を付与する高官能基密度バイオベースバインダーを開発

ナトリウムイオン2次電池に高性能・高耐久性を付与する
高官能基密度バイオベースバインダーを開発

ポイント

  • バイオベース化合物であるフマル酸エステルを原料とする高官能基密度バインダー(ポリフマル酸)を合成して、ナトリウムイオン2次電池におけるハードカーボン負極のバインダーとして適用した。
  • ポリフマル酸/ハードカーボン系は、12.5 Nと基盤からの高い引きはがし力を要し、ポリアクリル酸/ハードカーボン系(11.5 N)、PVDF/ハードカーボン系(9.8 N)よりも吸着力が顕著に高かった。
  • ポリフマル酸/ハードカーボン系を負極としたナトリウムイオン2次電池は、ポリアクリル酸/ハードカーボン系、PVDF/ハードカーボン系のいずれと比較しても放電容量、耐久性、レート特性等において優れていた。また、他系とは異なり、充放電後の負極はクラック形成や集電体からの剥離を示さなかった。
  • 集電体への接着力が高く、高耐久性を促すバインダー材料として、ナトリウムイオン2次電池のみならず広範な蓄電デバイスへの応用展開が期待される。
 北陸先端科学技術大学院大学(JAIST)(学長・寺野稔、石川県能美市)の先端科学技術研究科 松見紀佳教授(物質化学フロンティア研究領域)、Amarshi Patra大学院生(博士後期課程)は、ナトリウムイオン2次電池*1の耐久性を大幅に高めつつ、高耐久性を促すバイオベース負極バインダーの開発に成功した。

【研究背景と内容】

 今日、リチウムイオン2次電池との比較において、資源調達の利便性やコスト性に優れるナトリウムイオン2次電池の研究開発が国内外において活発に進められている。ハードカーボン負極に用いられるバインダーとしては、PVDFのほかポリアクリル酸誘導体、カルボキシメチルセルロース塩等が挙げられるが、特にナトリウムイオンの電極内における低い拡散性に対処するため、イオン拡散に優位な特性を有するバインダー開発が求められる。
 従来型のポリアクリル酸の場合には、高分子主鎖において炭素原子ひとつおきに官能基としてのカルボン酸を有しているが、ポリフマル酸においては、主鎖を構成するすべての炭素原子上にカルボン酸を有し、高官能基密度高分子となっている。このようなポリフマル酸の構造的特質は、多点相互作用による集電体へのより強固な接着を促すとともに、高密度なイオンホッピングサイトによる高い金属カチオン拡散性をもたらすと期待できる。

 加えて、フマル酸*2はバイオベース化合物であり、バイオベースポリマー*3としてのポリフマル酸の広範な活用は低炭素化技術としても魅力的である。フマル酸エステルのラジカル重合によるポリフマル酸エステルの加水分解において、ポリフマル酸を得た(図1)。ポリフマル酸の合成に関しては1984年に大津らが重合法を報告したが、電池研究への適用研究は行われていなかった。
 本研究では、ハードカーボン、カーボンブラック(Super P)、ポリフマル酸から水系スラリーを作製し、銅箔上にコーティング、乾燥後負極とした。1.0M NaClO4 in EC: PC = 1:1 (v/v)を電解液としてアノード型ハーフセル*4を構築し、各種電気化学評価及び電池評価を行った。
 電気化学評価に先立ち、基盤からの引きはがし力評価を行ったところ、ポリフマル酸/ハードカーボン系は、12.5 Nと基盤からの高い引きはがし力を要し、ポリアクリル酸/ハードカーボン系(11.5 N)、PVDF/ハードカーボン系(9.8 N)よりも吸着力が顕著に高かった(図2)。
 また、充放電試験においては、上記のアノード型ハーフセルは30 mAg-1及び60 mAg-1の電流密度において、それぞれ288 mAhg-1及び254 mAhg-1の放電容量を示し、PVDF系やポリアクリル酸系と比較して顕著に優れた性能を示した(図3)。また、長期サイクル耐久性においても優れていた。さらに、負極におけるナトリウムイオン拡散係数はポリフマル酸/ハードカーボン系では1.90x10-13 cm2/s、ポリアクリル酸/ハードカーボン系では1.75x10-13cm2/s、PVDF/ハードカーボン系では8.88x10-14 cm2/sであった。
 充放電後の負極をSEMによる断面像から観察したところ、ポリフマル酸/ハードカーボン系では、他系(ポリアクリル酸/ハードカーボン系、PVDF/ハードカーボン系)とは異なり、系内におけるクラック形成や集電体からの剥離が認められなかったことから、大幅に耐久性が改善されていることが示された(図4)。充放電後の負極のXPSスペクトルにおいては、ポリフマル酸系ではバインダー由来の高濃度の酸素原子の含有が観測されることに加え(図4)、Na2CO3、Na2O、NaCl等の無機成分も他のバインダー系よりも多く含まれ、ナトリウムイオンの高速な拡散に寄与しつつ電解液の更なる分解を抑制していると考えられる。

 本成果は、Journal of Materials Chemistry A(英国王立化学会)(IF 11.9)オンライン版に5月10日(英国時間)に掲載された。また、Cover ArtのOutside Back Coverとしての採用も内定している。

【今後の展開】

 本高分子材料においては種々の高分子反応等による様々な構造の改変が可能であり、さらなる高性能化につながると期待できる。
 今後は、企業との共同研究(開発パートナー募集中、サンプル提供応相談)を通して将来的な社会実装を目指す(特許出願済み)。高耐久性ナトリウムイオン2次電池の普及を通して社会の低炭素化に寄与する技術への展開を期待したい。
 集電体への接着力が高く、高耐久性を促すバインダー材料として、ナトリウムイオン2次電池のみならず広範な蓄電デバイスへの応用展開が期待される。

pr20240520-11.jpg

図1.ポリフマル酸の合成スキーム

pr20240520-12.jpg

図2.各バインダー系における引きはがし試験

pr20240520-13.png

図3.各バインダー系における負極型ハーフセルの充放電サイクル特性

pr20240520-14.jpg

図4.各バインダー系における充放電後の各負極のXPS(C1s)スペクトル及びSEM断面像

【論文情報】

雑誌名 Journal of Materials Chemistry A
題目 Water Soluble Densely Functionalized Poly(hydroxycarbonylmethylene) Binder for Higher-Performance Hard Carbon Anode-based Sodium-ion Batteries
著者 Amarshi Patra and Noriyoshi Matsumi*
掲載日 2024年5月10日
DOI 10.1039/D4TA00285G

【用語説明】

1. ナトリウムイオン2次電池:
電解質中のナトリウムイオンが電気伝導を担う2次電池。従来型のリチウムイオン2次電池と比較して原料の調達の利便性やコスト性に優れることから、各種ポータブルデバイスや環境対応自動車への適用が期待されている。
2. フマル酸:
フマル酸は無水マレイン酸(バイオベース無水マレイン酸を含む)を原料として工業的に生産されるが、糖類に糸状菌を作用させて製造することも可能である。さらに、最近ではCO2を原料とした人工光合成によりフマル酸を生産する技術も脚光を浴びている。CO2もしくは糖類、バイオベース無水マレイン酸から誘導可能なフマル酸を用いた高付加価値な化成品の製造は、カーボンニュートラルへの貢献において魅力あるアプローチといえる。
3. バイオベースポリマー:
生物資源由来の原料から合成される高分子材料の総称。低炭素化技術として、その利用の拡充が期待されている。
4. アノード型ハーフセル:
ナトリウムイオン2次電池の場合には、アノード極/電解質/Naの構成からなる半電池を意味する。

令和6年5月20日

PAGETOP