ダイヤモンドのNV中心を用いた温度計測に成功 ~非線形光学による新しい量子センシングの可能性~
国立大学法人筑波大学 国立大学法人北陸先端科学技術大学院大学 |
ダイヤモンドのNV中心を用いた温度計測に成功
~非線形光学による新しい量子センシングの可能性~
温度センサーは接触型と非接触型に大別されます。接触型の温度センサーには抵抗温度計、サーミスタや熱電対などが、非接触型の温度センサーには量子準位の変化で温度を読み取る量子センサーが主に用いられています。非接触型量子センサーの中でも、ダイヤモンドに導入した窒素―空孔(NV)中心と呼ばれる格子欠陥を用いたセンサーは、高空間分解能・高感度を必要とする細胞内計測やデバイス評価装置のセンサーへの応用が期待されています。 高純度のダイヤモンドは結晶学的に対称性が高く、対象点を中心に結晶を反転させると結晶構造が重なる空間反転対称性を持っています。結晶の対称性は、結晶の光学的性質を決定する上で重要な役割を担っており、空間反転対称性の有無は、非線形光学効果の発現を左右します。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)が発現することを報告しました。このSHGは、結晶にレーザー光を照射した際に、そのレーザー周波数の2倍の周波数の光が発生する現象です。 この成果を基に、本研究では、20℃から300℃の温度範囲において、SHG強度の変化を調べ、高温では屈折率変化による光の位相不整合によりSHG強度が大きく減少することを発見しました。 本研究成果は、ダイヤモンドベースの非線形光学による温度センシングの実現に向けた効率的かつ新しい方法を提示するものと言えます。 |
【研究代表者】
筑波大学 数理物質系
長谷 宗明教授
北陸先端科学技術大学院大学 応用物理学領域
安 東秀准教授
【研究の背景】
温度センサーは、エアコン、冷蔵庫、自動車エンジン、パソコンなどさまざまな電子機器に使用されており、温度管理や機器の性能維持に重要な役割を果たしています。温度センサーにはさまざまな種類がありますが、大きくは接触型と非接触型に分類されます。接触型の温度センサーには抵抗温度計、サーミスタ、熱電対などが用いられ、一方、非接触型の温度センサーには量子センサー注1)が主に使われています。
特に、ダイヤモンド中の窒素−空孔(NV)中心注2)を用いた非接触型量子センサーは、NV中心における量子準位間発光の共振マイクロ波周波数が温度によって変化することを原理とし、高空間分解能・高感度を必要とする細胞内計測や、デバイス評価装置のセンサーへの応用などが期待されています。ダイヤモンドのNV中心は、置換型窒素原子と炭素原子の隣の空孔からなる原子状欠陥(図1挿入図)です。
表面近傍(深さ数十ナノメートル)にNV中心を導入するには、一般に窒素イオン注入と高温アニールの組み合わせがよく用いられます。近年、ダイヤモンドのNV中心は、発光など豊かな光物性から、量子計算のためのフォトニックデバイス技術、単一光子源などへの応用が期待され、高い注目を集めています。さらに、ダイヤモンドのNV中心を用いた量子センシングが注目され、電場(電流)、磁場(スピン)の計測や、温度センサーに利用されています。一方、結晶の対称性、中でも空間反転対称性注3)の有無は、物質の光学的性質を決定する上で重要な役割を担っています。本研究チームは近年、ダイヤモンド結晶にNV中心を人工的に導入し、ダイヤモンド結晶の反転対称性を破ることで、2次の非線形光学効果である第二高調波発生(SHG)注4)を発現することを報告しましたa)。
今回、本研究チームは、NV含有ダイヤモンド結晶に赤外域の超短パルスレーザーを照射することで、第二高調波、および第三高調波の発光強度の温度依存性について研究し、非線形光学効果に基づいた温度センサーとしての可能性を探りました。
【研究内容と成果】
本研究チームは、フェムト秒(1000兆分の1秒)の時間だけ波長800nmで瞬く超短パルスレーザー注5)を波長1350nmの赤外パルス光に変換し、NV中心を導入した高純度ダイヤモンド単結晶に励起光として照射しました。これにより、ダイヤモンドの表面近傍から発生したカスケード型第三高調波(cTHG)と第二高調波の強度変化を、20℃~300℃の温度範囲で調べました。図2は、20℃(室温)から240℃までのさまざまな温度でNV含有ダイヤモンド結晶から得られた典型的な発光スペクトルを示します。室温の20℃においては、複屈折性を有するNV含有ダイヤモンド試料の角度を調整することにより、ほぼ完全な位相整合注6)が精巧に行われました。この時、SHGについては約4.7 × 10-5、cTHGについては約3.0 × 10-5の光変換効率が得られています。しかし、温度上昇に伴い、SHG および cTHG の強度は急激に減少することが分かります。
また、20℃から300℃までの非線形発光の温度同調曲線を、さらに光学調整を行わずに20℃の間隔で記録したところ、SHGとcTHGの積分強度は、低温領域(100℃以下)では、ほとんど温度変化しないことが分かりました。しかし、高温領域(150℃から300℃)では、SHG強度、cTHG強度ともに温度の上昇とともに急激に低下し、室温で得られる信号強度に比べてほぼ1桁低い信号強度が観測されました。一方、NV中心を導入する前の純粋なダイヤモンド結晶のTHG強度は、温度の上昇とともにゆっくり減少することが分かりました。ダイヤモンド結晶では、屈折率の温度変化による位相不整合により、格子温度の上昇に伴ってSHG強度が減少したと考えられます(図3)。このように、NV含有ダイヤモンドのSHGから得られる温度センサーとしての感度(dI/dT=0.81%/℃)は、高純度ダイヤモンドのTHGから得られる温度感度(dI/dT=0.25%/℃)よりも3倍以上大きく、非線形光学効果に基づいた温度センシング技術開発への大きな可能性を示すものでした。
【今後の展開】
本研究チームは、2次の非線形光学効果である第二高調波発生や電気−光学効果を用いた量子センシング技術を深化させ、最終的にダイヤモンドを用いたナノメートルかつ超高速時間領域(時空間極限領域)での量子センシングの研究を進めています。NV含有ダイヤモンドにおいては、NV中心の配向をそろえることでSHGの変換効率が高まると期待されます。また、NV含有ダイヤモンドは、チップ状に加工することで、走査型プローブ顕微鏡のプローブとしての役割も果たし、さまざまな先端材料に対して有効なナノメートル分解能をもつ温度センサーを実現できる可能性を秘めています。今後は、フェムト秒(1000兆分の1)パルスレーザー技術が持つ高い時間分解能と、走査型プローブ顕微鏡注7)が持つ高い空間分解能とを組み合わせ、ダイヤモンドのNV中心から引き出したSHGなどの2次の非線形光学効果が、電場や温度のセンシングに幅広く応用できることを示していきます。
【参考図】
図1.本研究に用いた実験装置の概略 挿入図は、ダイヤモンド結晶中の窒素―空孔(NV)中心の原子構造を示している。 |
図2.実験結果
第二高調波発生(SHG)とカスケード型第三高調波発生(cTHG)スペクトルの結晶温度依存性。五つの値:20℃(室温)、90℃、160℃、200℃、240℃に、黒、濃い赤、オレンジ、緑、紫の線が対応する。
図3.ダイヤモンド結晶における位相整合 NVダイヤモンド結晶における温度、屈折率(赤線)、およびSHG強度の関係を示す。 |
【用語解説】
注1)量子センサー
量子化した準位や量子もつれなどの量子効果を利用して、磁場、電場、温度などの物理量を超高感度で計測するセンサーのこと。
注2)窒素−空孔(NV)中心
ダイヤモンドは炭素原子から構成される結晶だが、結晶中に不純物として窒素(Nitrogen)が存在すると、そのすぐ隣に炭素原子の抜け穴(空孔:Vacancy)ができることがある。この窒素と空孔が対になった「NV(Nitrogen-Vacancy)中心」は、ダイヤモンドの着色にも寄与する色中心(カラーセンター)と呼ばれる格子欠陥となる。NV中心には、周辺環境の温度や磁場の変化を極めて敏感に検知して量子状態が変わる特性があり、この特性をセンサー機能として利用することができる。このため、NV中心を持つダイヤモンドは「量子センサー」と呼ばれ、次世代の超高感度センサーとして注目されている。
注3)空間反転対称性
三次元空間の直交座標系(x, y, z)において、結晶中の全ての原子を(x, y, z) → (-x, -y, -z)と反転操作しても元の結晶と完全に一致すること。
注4)第二高調波発生
同じ周波数(波長)を持つ二つの光子が非線形光学結晶に入射すると、入射した光子の2倍の周波数(半分の波長)の光が発生する現象のこと。2次の非線形光学効果(電場振幅の二乗に比例する効果)の一種である。同様に、第三高調波発生は三つの光子から入射した光子の3倍の周波数の光が発生する3次の非線形光学効果である。
注5)超短パルスレーザー
パルスレーザーの中でも、特にパルス幅(時間幅)がフェムト秒以下の極めて短いレーザーのことをいう。光電場の振幅が極めて大きいため、2次や3次の非線形光学効果を引き起こすことができる。
注6)位相整合
基本波レーザー光とそれから発生する第二高調波(或いは第三高調波)の位相速度が一致することである。位相整合を満たす方法として、複屈折性を有する結晶の角度を回転させることで二つの異なる波長に対する屈折率を位相整合条件に一致させることができる。位相不整合が起こると第二高調波の強度が減少することが知られている。
注7)走査型プローブ顕微鏡
小さいプローブ(探針)を試料表面に近接させ、探針を表面に沿って動かす(走査する)ことで、試料の原子レベルの表面構造のみならず、温度や磁性などの物理量も画像化できる顕微鏡である。
【研究資金】
本研究は、国立研究開発法人 科学技術振興機構 CREST「ダイヤモンドを用いた時空間極限量子センシング」(グラント番号:JPMJCR1875)(研究代表者:長谷 宗明)による支援を受けて実施されました。
【参考文献】
a) Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase, 2021, Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. ACS Photonics 8, 988-993 (doi:1021/acsphotonics.0c01806).
【掲載論文】
題 目 | Temperature-dependent second-harmonic generation from color centers in diamond. (ダイヤモンドの色中心からの温度依存的な第二高調波発生) |
著者名 | Aizitiaili Abulikemu, Yuta Kainuma, Toshu An, and Muneaki Hase |
掲載誌 | Optics Letters |
掲載日 | 2022年3月1日(著者版先行公開) |
DOI | 10.1364/OL.455437 |
令和4年3月9日