ニュース・イベント

プレスリリース

多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発

JAIST logo_tohoku.png 国立大学法人北陸先端科学技術大学院大学
国立大学法人東北大学

多機能ナノ粒子を用いて、無傷のリソソームを迅速かつ高純度に単離する手法を開発

ポイント

  • 磁性―プラズモンハイブリッドナノ粒子を哺乳動物細胞のリソソーム内腔へエンドサイトーシス*1経路で高効率に送達することに成功
  • ハイブリッドナノ粒子の細胞内輸送過程をプラズモンイメージング*2によって精確に追跡することで、高純度にリソソームを磁気分離するための最適培養時間を容易に決定可能
  • リソソーム内腔にハイブリッドナノ粒子を送達後、細胞膜を温和に破砕し、4℃で30分以内にリソソームを磁気分離することで、細胞内の状態を維持したままリソソームの高純度単離に成功
 北陸先端科学技術大学院大学(JAIST)(学長:寺野 稔、石川県能美市) 先端科学技術研究科 前之園 信也 教授松村 和明 教授平塚 祐一 准教授の研究チームは、東北大学(総長:大野 英男、宮城県仙台市)大学院生命科学研究科の田口 友彦教授と共同で、磁気分離能(超常磁性)とバイオイメージング能(プラズモン散乱*3特性)を兼ね備えた多機能ナノ粒子(磁性―プラズモンハイブリッドナノ粒子)を用いて、細胞内の状態を維持したままリソソームを迅速かつ高純度に単離する技術を世界で初めて開発しました。

【背景と経緯】
 リソソームは60を超える加水分解酵素とさまざまな膜タンパク質を含む細胞小器官(オルガネラ)で、タンパク質、炭水化物、脂質、ヌクレオチドなどの高分子の分解と再利用に主要な役割を果たします。これらの機能に加えて、最近の発見では、リソソームがアミノ酸シグナル伝達にも関与していることがわかってきています。リソソーム機能障害に由来する疾患も数多く存在します。そのため、リソソームの機能をより深く理解することは基礎生物学においても医学においても重要な課題です。
 リソソームの代謝物の探索は、近年急速に関心が高まっている研究分野です。たとえば、飢餓状態と栄養が豊富な状態でリソソームの代謝物を研究することにより、アミノ酸の流出がV-ATPaseおよびmTORに依存することが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。このように、外部刺激に応答したリソソームの動的な性質を調べるためには、リソソームを細胞内の状態を維持したまま迅速かつ高純度に分離する必要があります。
 一般的に、リソソームの単離は密度勾配超遠心分離法*4によって行われていますが、密度勾配超遠心分離法には二つの大きな問題があります。まず一つ目の問題として、細胞破砕液にはほぼ同じ大きさと密度を持ったオルガネラが多種類あるため、得られた画分にはリソソーム以外の別のオルガネラが不純物として混ざっていることがよくあります。したがって、リソソーム画分のプロテオミクス解析を行っても、完全な状態のリソソームに関する情報を得ることができません。二つ目の問題として、分離プロセスに長い時間がかかるため、リソソームに存在する不安定なタンパク質は脱離、変性、または分解される可能性があります。この問題も、リソソームに関する情報を得ることを大きく妨げます。
 これらの問題を克服するために、リソソームを迅速に単離するための他の技術が開発されました。たとえば、磁気ビーズを用いた免疫沈降法*5によってリソソームを迅速に分離できることが示されました(M. Abu-Remaileh et al., Science, 2017, 358, 807)。しかし、この手法では、ウイルスベクターのトランスフェクションなどによって抗体修飾磁気ビーズが結合できるリソソーム膜貫通タンパク質を発現させる必要があります。この方法は、密度勾配超遠心分離法よりも高純度のリソソーム画分が得られますが、リソソーム膜のタンパク質組成とその後のプロテオミクス解析に悪影響を与える可能性が指摘されています(J. Singh et al., J. Proteome Res., 2020, 19, 371-381.)。

【研究の内容】
 本研究では、無傷のリソソームを迅速かつ効率的に分離する新たな単離法として、アミノデキストラン(aDxt)で表面修飾したAg/FeCo/Ag コア/シェル/シェル型磁性―プラズモンハイブリッドナノ粒子(MPNPs)をエンドサイトーシス経路を介してリソソームの内腔に集積した後、細胞膜を温和に破砕し、リソソームを磁気分離するという手法を開発しました(図1)。リソソームの高純度単離のためには、エンドサイトーシス経路におけるaDxt結合MPNPs(aDxt-MPNPs)の細胞内輸送を精確に追跡することが必要となります。そこで、aDxt-MPNPsとオルガネラの共局在の時間変化を、aDxt-MPNPsのプラズモンイメージングとオルガネラ(初期エンドソーム、後期エンドソームおよびリソソーム)の免疫染色によって追跡しました(図2)。初期エンドソームおよび後期エンドソームからのaDxt-MPNPsの脱離と、リソソーム内腔へのaDxt-MPNPsの十分な蓄積に必要な最適培養時間を決定し、その時間だけ培養後、リソソームを迅速かつマイルドに磁気分離しました。細胞破砕からリソソーム単離完了までの経過時間(tdelay)と温度(T)を変化させることにより、リソソームのタンパク質組成に対するtdelayTの影響をアミノ酸分析によって調べました。その結果、リソソームの構造は細胞破砕後すぐに損なわれることがわかり、リソソームを可能な限り無傷で高純度で分離するには、tdelay ≤ 30分およびT = 4℃という条件で磁気分離する必要があることがわかりました(図3)。これらの条件を満たすことは密度勾配超遠心分離法では原理的に困難であり、エンドサイトーシスという細胞の営みを利用して人為的にリソソームを帯磁させて迅速かつ温和に単離する本手法の優位性が明らかとなりました。
 本研究成果は、2022年1月3日(米国東部標準時間)に米国化学会の学術誌「ACS Nano」のオンライン版に掲載されました。

【今後の展開】

 本手法はリソソーム以外のオルガネラの単離にも応用可能な汎用性のある技術であり、オルガネラの新たな高純度単離技術としての展開が期待されます。

pr20220105-21.png

図1 磁性―プラズモンハイブリッドナノ粒子を用いたリソソームの迅速・高純度単離法の概念図

pr20220105-22.png

図2 COS-1細胞におけるaDxt-MPNPsの細胞内輸送。
(A)aDxt-MPNPsの細胞内輸送の概略図(tは培養時間)。
(B)aDxt-MPNPsとリソソームマーカータンパク質(LAMP1)の共局在を示す共焦点レーザー走査顕微鏡像
 (核:青、aDxt-MPNPs:緑、リソソーム:赤)。 aDxt-MPNPsはプラズモンイメージングによって可視化。
 スケールバーは20 µm。

pr20220105-23.png

図3 単離されたリソソームのウエスタンブロッティングおよびアミノ酸組成分析の結果。
(A)ネガティブセレクション(NS)およびポジティブセレクション(PS)画分。
(B)PS画分の共焦点レーザー走査顕微鏡画像(緑:aDxt-MPNPs、赤:LAMP1)。
(C)NSおよびPS画分、および細胞破砕液のウエスタンブロット結果。
(D)異なる温度でtdelayを変化した際に得られたリソソーム画分のアミノ酸含有量の変化。
  水色(4℃、tdelay = 30分)、青(4℃、tdelay = 120分)、ピンク(25℃、tdelay = 30分)、
  および赤(25℃、tdelay = 120分)。

【論文情報】

掲載誌 ACS Nano
論文題目 Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles
(磁性―プラズモンハイブリッドナノ粒子を用いた完全な状態のリソソームの迅速かつ温和な単離)
著者 The Son Le, Mari Takahashi, Noriyoshi Isozumi, Akio Miyazato, Yuichi Hiratsuka, Kazuaki Matsumura, Tomohiko Taguchi, Shinya Maenosono*
掲載日 2022年1月3日(米国東部標準時間)にオンライン版に掲載
DOI 10.1021/acsnano.1c08474

【用語説明】

*1.エンドサイトーシス:
 細胞が細胞外の物質を取り込む過程の一つ
*2.プラズモンイメージング:
 プラズモン散乱を用いて、光の回折限界以下のサイズの金属ナノ粒子を光学顕微鏡(蛍光顕微鏡や共焦点顕微鏡など)で可視化すること
*3.プラズモン散乱:
 金属ナノ粒子表面での自由電子の集合振動である局在表面プラズモンと可視光との相互作用により、可視光が強く散乱される現象
*4.密度勾配超遠心分離法:
 密度勾配のある媒体中でサンプルに遠心力を与えることで、サンプル中の構成成分がその密度に応じて分離される方法
*5.免疫沈降法:
 特定の抗原を認識する抗体を表面修飾したビーズ用い、標的抗原が発現したオルガネラを細胞破砕液中から選択的に分離する免疫化学的手法

令和4年1月5日

PAGETOP