YES We show the termination of R/S, where R is minus(x,0) -> x minus(s(x),s(y)) -> minus(x,y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) minus(minus(x,y),z) -> minus(x,plus(y,z)) and S is: rand(x) -> x rand(x) -> rand(s(x)) Since R almost dominates S and S is non-duplicating, it is enough to show finiteness of (P, Q). Here P consists of the dependency pairs minus#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) quot#(s(x),s(y)) -> minus#(x,y) plus#(s(x),y) -> plus#(x,y) minus#(minus(x,y),z) -> minus#(x,plus(y,z)) minus#(minus(x,y),z) -> plus#(y,z) and Q consists of the rules: minus(x,0) -> x minus(s(x),s(y)) -> minus(x,y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) plus(0,y) -> y plus(s(x),y) -> s(plus(x,y)) minus(minus(x,y),z) -> minus(x,plus(y,z)) rand(x) -> x rand(x) -> rand(s(x)) The weakly monotone algebra (N^3, >_lex) with minus#_A((x1,y1,z1),(x2,y2,z2)) = (x2 + 1, 1, 0) s_A((x1,y1,z1)) = (x1, 0, 0) quot#_A((x1,y1,z1),(x2,y2,z2)) = (x2 + 2, 0, 1) minus_A((x1,y1,z1),(x2,y2,z2)) = (x1 + x2 + 1, 1, 1) plus#_A((x1,y1,z1),(x2,y2,z2)) = (0, 2, 1) plus_A((x1,y1,z1),(x2,y2,z2)) = (x2, y2 + 1, z2) 0_A = (1, 1, 1) quot_A((x1,y1,z1),(x2,y2,z2)) = (2, 0, 0) rand_A((x1,y1,z1)) = (x1 + 1, y1 + 1, z1) strictly orients the following dependency pairs: quot#(s(x),s(y)) -> minus#(x,y) minus#(minus(x,y),z) -> plus#(y,z) We remove them from the set of dependency pairs. The weakly monotone algebra (N^3, >_lex) with minus#_A((x1,y1,z1),(x2,y2,z2)) = (x1, 0, 0) s_A((x1,y1,z1)) = (x1, 1, 2) quot#_A((x1,y1,z1),(x2,y2,z2)) = (0, 0, 0) minus_A((x1,y1,z1),(x2,y2,z2)) = (x1 + x2 + 2, 2, 3) plus#_A((x1,y1,z1),(x2,y2,z2)) = (0, 0, 0) plus_A((x1,y1,z1),(x2,y2,z2)) = (x2 + 1, y2 + 2, 1) 0_A = (0, 1, 1) quot_A((x1,y1,z1),(x2,y2,z2)) = (1, 2, 1) rand_A((x1,y1,z1)) = (x1 + 1, 1, 0) strictly orients the following dependency pairs: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) We remove them from the set of dependency pairs. The weakly monotone algebra (N^3, >_lex) with minus#_A((x1,y1,z1),(x2,y2,z2)) = (x1 + x2, y1 + y2, z1) s_A((x1,y1,z1)) = (x1, y1 + 1, z1 + 1) quot#_A((x1,y1,z1),(x2,y2,z2)) = (0, 0, 0) minus_A((x1,y1,z1),(x2,y2,z2)) = (x1, y1, z1) plus#_A((x1,y1,z1),(x2,y2,z2)) = (x1 + x2, y1 + y2, z1 + z2) 0_A = (1, 1, 1) quot_A((x1,y1,z1),(x2,y2,z2)) = (x1 + 1, y1 + 1, z1 + 1) plus_A((x1,y1,z1),(x2,y2,z2)) = (x1 + x2 + 1, y1 + y2 + 1, z1 + z2 + 1) rand_A((x1,y1,z1)) = (x1 + 1, 1, 0) strictly orients the following dependency pairs: minus#(s(x),s(y)) -> minus#(x,y) plus#(s(x),y) -> plus#(x,y) We remove them from the set of dependency pairs. The weakly monotone algebra (N^3, >_lex) with quot#_A((x1,y1,z1),(x2,y2,z2)) = (x1, y1, z1) s_A((x1,y1,z1)) = (x1, y1 + 1, 2) minus_A((x1,y1,z1),(x2,y2,z2)) = (x1, y1, z1 + 1) 0_A = (1, 1, 1) quot_A((x1,y1,z1),(x2,y2,z2)) = (x1 + x2 + 1, y1 + y2, 2) plus_A((x1,y1,z1),(x2,y2,z2)) = (x1 + x2 + 1, y1 + y2 + 1, z2 + 2) rand_A((x1,y1,z1)) = (x1 + 1, 1, 0) strictly orients the following dependency pairs: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) We remove them from the set of dependency pairs. No dependency pair remains.