YES We show the termination of R/S, where R is minus(x,0) -> x minus(s(x),s(y)) -> minus(x,y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) and S is: rand(x) -> x rand(x) -> rand(s(x)) Since R almost dominates S and S is non-duplicating, it is enough to show finiteness of (P, Q). Here P consists of the dependency pairs minus#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) quot#(s(x),s(y)) -> minus#(x,y) and Q consists of the rules: minus(x,0) -> x minus(s(x),s(y)) -> minus(x,y) quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) rand(x) -> x rand(x) -> rand(s(x)) The weakly monotone algebra (N^3, >_lex) with minus#_A((x1,y1,z1),(x2,y2,z2)) = (0, 1, 1) s_A((x1,y1,z1)) = (x1, 1, 0) quot#_A((x1,y1,z1),(x2,y2,z2)) = (1, 0, 0) minus_A((x1,y1,z1),(x2,y2,z2)) = (x1 + x2, 2, 1) 0_A = (1, 3, 1) quot_A((x1,y1,z1),(x2,y2,z2)) = (x2 + 2, y2 + 1, 0) rand_A((x1,y1,z1)) = (x1 + 1, 1, 0) strictly orients the following dependency pairs: quot#(s(x),s(y)) -> minus#(x,y) We remove them from the set of dependency pairs. The weakly monotone algebra (N^3, >_lex) with minus#_A((x1,y1,z1),(x2,y2,z2)) = (x1, y1, z1) s_A((x1,y1,z1)) = (x1, y1 + 1, 2) quot#_A((x1,y1,z1),(x2,y2,z2)) = (x2, y2, z2) minus_A((x1,y1,z1),(x2,y2,z2)) = (x1, y1, z1 + 1) 0_A = (1, 1, 1) quot_A((x1,y1,z1),(x2,y2,z2)) = (x1 + 1, y1 + 1, z1) rand_A((x1,y1,z1)) = (x1 + 1, 1, 0) strictly orients the following dependency pairs: minus#(s(x),s(y)) -> minus#(x,y) We remove them from the set of dependency pairs. The weakly monotone algebra (N^3, >_lex) with quot#_A((x1,y1,z1),(x2,y2,z2)) = (x1, y1, z1) s_A((x1,y1,z1)) = (x1, y1 + 1, z1 + 1) minus_A((x1,y1,z1),(x2,y2,z2)) = (x1, y1, z1) 0_A = (1, 1, 1) quot_A((x1,y1,z1),(x2,y2,z2)) = (x1 + 1, y1, z1 + 1) rand_A((x1,y1,z1)) = (x1 + 1, 1, 0) strictly orients the following dependency pairs: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) We remove them from the set of dependency pairs. No dependency pair remains.