YES We show the termination of R/S, where R is f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x),y,y) -> f'(y,x,s(x)) and S is: rand(x) -> x rand(x) -> rand(s(x)) Since R almost dominates S and S is non-duplicating, it is enough to show finiteness of (P, Q). Here P consists of the dependency pairs f#(g(x)) -> f#(f(x)) f#(g(x)) -> f#(x) f'#(s(x),y,y) -> f'#(y,x,s(x)) and Q consists of the rules: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x),y,y) -> f'(y,x,s(x)) rand(x) -> x rand(x) -> rand(s(x)) The weakly monotone algebra (N^2, >_lex) with f#_A((x1,y1)) = (0, 0) g_A((x1,y1)) = (1, 1) f_A((x1,y1)) = (3, 0) f'#_A((x1,y1),(x2,y2),(x3,y3)) = (x1 + x2, y1 + y2) s_A((x1,y1)) = (x1, y1 + 1) h_A((x1,y1)) = (x1 + 1, y1) f'_A((x1,y1),(x2,y2),(x3,y3)) = (x1 + x3, y1 + y3) rand_A((x1,y1)) = (x1 + 1, 0) strictly orients the following dependency pairs: f'#(s(x),y,y) -> f'#(y,x,s(x)) We remove them from the set of dependency pairs. The weakly monotone algebra (N^2, >_lex) with f#_A((x1,y1)) = (x1, y1) g_A((x1,y1)) = (x1, y1 + 1) f_A((x1,y1)) = (x1, y1) h_A((x1,y1)) = (x1 + 1, 1) f'_A((x1,y1),(x2,y2),(x3,y3)) = (x1 + x3, y1 + y3) s_A((x1,y1)) = (x1, y1) rand_A((x1,y1)) = (x1 + 1, y1) strictly orients the following dependency pairs: f#(g(x)) -> f#(f(x)) f#(g(x)) -> f#(x) We remove them from the set of dependency pairs. No dependency pair remains.