YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 RelADPP
↳5 RelADPCleverAfsProof (⇒, 51 ms)
↳6 QDP
↳7 MRRProof (⇔, 0 ms)
↳8 QDP
↳9 MRRProof (⇔, 5 ms)
↳10 QDP
↳11 MRRProof (⇔, 0 ms)
↳12 QDP
↳13 PisEmptyProof (⇔, 0 ms)
↳14 YES
top(ok(new(x))) → top(check(x))
top(ok(old(x))) → top(check(x))
check(old(x)) → ok(old(x))
bot → new(bot)
check(old(x)) → old(check(x))
check(new(x)) → new(check(x))
old(ok(x)) → ok(old(x))
new(ok(x)) → ok(new(x))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
top(ok(new(x))) → TOP(check(x))
top(ok(new(x))) → top(CHECK(x))
top(ok(old(x))) → TOP(check(x))
top(ok(old(x))) → top(CHECK(x))
check(old(x)) → ok(OLD(x))
bot → NEW(BOT)
check(old(x)) → OLD(CHECK(x))
check(new(x)) → NEW(CHECK(x))
old(ok(x)) → ok(OLD(x))
new(ok(x)) → ok(NEW(x))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.
top(ok(old(x))) → TOP(check(x))
top(ok(new(x))) → top(check(x))
top(ok(old(x))) → top(check(x))
top(ok(new(x))) → TOP(check(x))
check(old(x)) → ok(old(x))
bot → new(bot)
check(old(x)) → old(check(x))
check(new(x)) → new(check(x))
old(ok(x)) → ok(old(x))
new(ok(x)) → ok(new(x))
Furthermore, We use an argument filter [LPAR04].
Filtering:old_1 =
new_1 =
top_1 =
check_1 =
bot =
ok_1 =
TOP_1 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
TOP(x1) = TOP(x1)
ok(x1) = x1
new(x1) = new(x1)
check(x1) = x1
old(x1) = x1
top(x1) = x1
Recursive path order with status [RPO].
Quasi-Precedence:
[TOP1, new1]
TOP1: [1]
new1: [1]
TOP0(ok0(new0(x))) → TOP0(check0(x))
TOP0(ok0(old0(x))) → TOP0(check0(x))
check0(old0(x)) → ok0(old0(x))
bot0 → new0(bot0)
check0(old0(x)) → old0(check0(x))
check0(new0(x)) → new0(check0(x))
old0(ok0(x)) → ok0(old0(x))
top0(ok0(new0(x))) → top0(check0(x))
top0(ok0(old0(x))) → top0(check0(x))
new0(ok0(x)) → ok0(new0(x))
TOP0(ok0(old0(x))) → TOP0(check0(x))
top0(ok0(old0(x))) → top0(check0(x))
POL(TOP0(x1)) = x1
POL(bot0) = 1
POL(check0(x1)) = 1 + 2·x1
POL(new0(x1)) = x1
POL(ok0(x1)) = 1 + 2·x1
POL(old0(x1)) = 1 + 2·x1
POL(top0(x1)) = 2·x1
TOP0(ok0(new0(x))) → TOP0(check0(x))
check0(old0(x)) → ok0(old0(x))
bot0 → new0(bot0)
check0(old0(x)) → old0(check0(x))
check0(new0(x)) → new0(check0(x))
old0(ok0(x)) → ok0(old0(x))
top0(ok0(new0(x))) → top0(check0(x))
new0(ok0(x)) → ok0(new0(x))
check0(old0(x)) → ok0(old0(x))
check0(old0(x)) → old0(check0(x))
POL(TOP0(x1)) = 2·x1
POL(bot0) = 0
POL(check0(x1)) = 2·x1
POL(new0(x1)) = 2·x1
POL(ok0(x1)) = x1
POL(old0(x1)) = 2 + x1
POL(top0(x1)) = 2·x1
TOP0(ok0(new0(x))) → TOP0(check0(x))
bot0 → new0(bot0)
check0(new0(x)) → new0(check0(x))
old0(ok0(x)) → ok0(old0(x))
top0(ok0(new0(x))) → top0(check0(x))
new0(ok0(x)) → ok0(new0(x))
TOP0(ok0(new0(x))) → TOP0(check0(x))
old0(ok0(x)) → ok0(old0(x))
top0(ok0(new0(x))) → top0(check0(x))
POL(TOP0(x1)) = x1
POL(bot0) = 2
POL(check0(x1)) = x1
POL(new0(x1)) = x1
POL(ok0(x1)) = 2 + x1
POL(old0(x1)) = 1 + 2·x1
POL(top0(x1)) = x1
bot0 → new0(bot0)
check0(new0(x)) → new0(check0(x))
new0(ok0(x)) → ok0(new0(x))