YES Termination proof of rtL-me3.trs

(0) Obligation:

Relative term rewrite system:
The relative TRS consists of the following R rules:

topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, x, N2(y)) → topB(0, x, T2(y))
topB(i, S1(x), y) → topA(i, N1(x), y)
topA(i, x, S2(y)) → topB(i, x, N2(y))
topA(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))

The relative TRS consists of the following S rules:

topB(i, x, N2(y)) → topB(i, x, N2(C(y)))
topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, x, S2(y)) → topB(i, x, N2(y))
topB(i, x, N2(y)) → topB(0, x, T2(y))
topA(i, T1(x), y) → topA(i, T1(x), y)
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topA(i, N1(x), y) → topA(i, N1(C(x)), y)
topB(i, x, T2(y)) → topB(i, x, T2(y))
topB(i, x, S2(y)) → topB(i, x, S2(D(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)

(1) RelTRS S Cleaner (EQUIVALENT transformation)

We have deleted all rules from S that have the shape t → t:

topA(i, T1(x), y) → topA(i, T1(x), y)
topB(i, x, T2(y)) → topB(i, x, T2(y))

(2) Obligation:

Relative term rewrite system:
The relative TRS consists of the following R rules:

topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, x, N2(y)) → topB(0, x, T2(y))
topB(i, S1(x), y) → topA(i, N1(x), y)
topA(i, x, S2(y)) → topB(i, x, N2(y))
topA(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))

The relative TRS consists of the following S rules:

topB(i, x, N2(y)) → topB(i, x, N2(C(y)))
topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, x, S2(y)) → topB(i, x, N2(y))
topB(i, x, N2(y)) → topB(0, x, T2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topA(i, N1(x), y) → topA(i, N1(C(x)), y)
topB(i, x, S2(y)) → topB(i, x, S2(D(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)

(3) RelTRStoRelADPProof (EQUIVALENT transformation)

We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].

(4) Obligation:

Relative ADP Problem with
absolute ADPs:

topB(i, N1(x), y) → TOPA(1, T1(x), y)
topA(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topA(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))

and relative ADPs:

topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
topA(i, S1(x), y) → TOPA(i, N1(x), y)
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topA(i, N1(x), y) → TOPA(1, T1(x), y)

(5) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(6) Obligation:

Relative ADP Problem with
absolute ADPs:

topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))
topB(i, N1(x), y) → TOPA(1, T1(x), y)
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))

and relative ADPs:

topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topA(i, N1(x), y) → TOPA(1, T1(x), y)
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))

(7) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


topB(i, N1(x), y) → TOPA(1, T1(x), y)

Relative ADPs:

topA(i, S1(x), y) → topA(i, N1(x), y)
topA(i, N1(x), y) → TOPA(1, T1(x), y)
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))

Relative ADPs:

topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))


Ordered with Polynomial interpretation [POLO]:

POL(0) = 0   
POL(1) = 0   
POL(C(x1)) = 0   
POL(D(x1)) = x1   
POL(N1(x1)) = 3 + 2·x1   
POL(N2(x1)) = 3·x1   
POL(S1(x1)) = 3 + 3·x1   
POL(S2(x1)) = 3·x1   
POL(T1(x1)) = x1   
POL(T2(x1)) = 3·x1   
POL(TOPA(x1, x2, x3)) = x1 + 2·x2 + 3·x3   
POL(TOPB(x1, x2, x3)) = x1 + 2·x2 + 3·x3   
POL(topA(x1, x2, x3)) = 2 + 3·x2   
POL(topB(x1, x2, x3)) = 2 + 3·x2   

(8) Obligation:

Relative ADP Problem with
absolute ADPs:

topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))

and relative ADPs:

topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)

(9) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(10) Obligation:

Relative ADP Problem with
absolute ADPs:

topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))

and relative ADPs:

topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)

(11) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))

Relative ADPs:

topA(i, S1(x), y) → topA(i, N1(x), y)
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, N1(x), y) → topA(1, T1(x), y)


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(0) = 0   
POL(1) = 0   
POL(C(x1)) = 0   
POL(D(x1)) = 0   
POL(N1(x1)) = 2·x1   
POL(N2(x1)) = 3·x1   
POL(S1(x1)) = 2 + 3·x1   
POL(S2(x1)) = 3·x1   
POL(T1(x1)) = 2   
POL(T2(x1)) = 3·x1   
POL(TOPA(x1, x2, x3)) = 2 + 3·x1 + 3·x2 + 3·x3   
POL(TOPB(x1, x2, x3)) = 3·x1 + 2·x2 + 3·x3   
POL(topA(x1, x2, x3)) = 3·x3   
POL(topB(x1, x2, x3)) = 3·x3   

(12) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

topA(i, x, S2(y)) → topB(i, x, N2(y))
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, N1(x), y) → topA(1, T1(x), y)
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)
topA(i, x, N2(y)) → topB(0, x, T2(y))
topA(i, S1(x), y) → topA(i, N1(x), y)
topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topA(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, S1(x), y) → topA(i, N1(x), y)

(13) DAbsisEmptyProof (EQUIVALENT transformation)

The RDT Problem has an empty P_abs. Hence, no infinite chain exists.

(14) YES