YES
0 RelTRS
↳1 RelTRS S Cleaner (⇔, 0 ms)
↳2 RelTRS
↳3 RelTRStoRelADPProof (⇔, 0 ms)
↳4 RelADPP
↳5 RelADPDepGraphProof (⇔, 0 ms)
↳6 RelADPP
↳7 RelADPReductionPairProof (⇔, 100 ms)
↳8 RelADPP
↳9 RelADPDepGraphProof (⇔, 0 ms)
↳10 RelADPP
↳11 RelADPReductionPairProof (⇔, 0 ms)
↳12 RelADPP
↳13 DAbsisEmptyProof (⇔, 0 ms)
↳14 YES
topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, x, N2(y)) → topB(0, x, T2(y))
topB(i, S1(x), y) → topA(i, N1(x), y)
topA(i, x, S2(y)) → topB(i, x, N2(y))
topA(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, x, N2(y)) → topB(i, x, N2(C(y)))
topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, x, S2(y)) → topB(i, x, N2(y))
topB(i, x, N2(y)) → topB(0, x, T2(y))
topA(i, T1(x), y) → topA(i, T1(x), y)
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topA(i, N1(x), y) → topA(i, N1(C(x)), y)
topB(i, x, T2(y)) → topB(i, x, T2(y))
topB(i, x, S2(y)) → topB(i, x, S2(D(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)
topA(i, T1(x), y) → topA(i, T1(x), y)
topB(i, x, T2(y)) → topB(i, x, T2(y))
topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, x, N2(y)) → topB(0, x, T2(y))
topB(i, S1(x), y) → topA(i, N1(x), y)
topA(i, x, S2(y)) → topB(i, x, N2(y))
topA(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, x, N2(y)) → topB(i, x, N2(C(y)))
topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, x, S2(y)) → topB(i, x, N2(y))
topB(i, x, N2(y)) → topB(0, x, T2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topA(i, N1(x), y) → topA(i, N1(C(x)), y)
topB(i, x, S2(y)) → topB(i, x, S2(D(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
topB(i, N1(x), y) → TOPA(1, T1(x), y)
topA(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topA(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
topA(i, S1(x), y) → TOPA(i, N1(x), y)
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topA(i, N1(x), y) → TOPA(1, T1(x), y)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.
topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))
topB(i, N1(x), y) → TOPA(1, T1(x), y)
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))
topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topA(i, N1(x), y) → TOPA(1, T1(x), y)
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
topB(i, N1(x), y) → TOPA(1, T1(x), y)
topA(i, S1(x), y) → topA(i, N1(x), y)
topA(i, N1(x), y) → TOPA(1, T1(x), y)
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
POL(0) = 0
POL(1) = 0
POL(C(x1)) = 0
POL(D(x1)) = x1
POL(N1(x1)) = 3 + 2·x1
POL(N2(x1)) = 3·x1
POL(S1(x1)) = 3 + 3·x1
POL(S2(x1)) = 3·x1
POL(T1(x1)) = x1
POL(T2(x1)) = 3·x1
POL(TOPA(x1, x2, x3)) = x1 + 2·x2 + 3·x3
POL(TOPB(x1, x2, x3)) = x1 + 2·x2 + 3·x3
POL(topA(x1, x2, x3)) = 2 + 3·x2
POL(topB(x1, x2, x3)) = 2 + 3·x2
topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(1, T1(x), T2(y)) → TOPB(1, T1(x), S2(y))
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))
topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.
topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))
topA(i, S1(x), y) → topA(i, N1(x), y)
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topA(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, S1(x), y) → TOPA(i, N1(x), y)
topA(i, x, S2(y)) → TOPB(i, x, N2(y))
topA(i, x, N2(y)) → TOPB(0, x, T2(y))
topA(i, S1(x), y) → topA(i, N1(x), y)
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, N1(x), y) → topA(1, T1(x), y)
topA(i, N1(x), y) → topA(1, T1(x), y)
POL(0) = 0
POL(1) = 0
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(N1(x1)) = 2·x1
POL(N2(x1)) = 3·x1
POL(S1(x1)) = 2 + 3·x1
POL(S2(x1)) = 3·x1
POL(T1(x1)) = 2
POL(T2(x1)) = 3·x1
POL(TOPA(x1, x2, x3)) = 2 + 3·x1 + 3·x2 + 3·x3
POL(TOPB(x1, x2, x3)) = 3·x1 + 2·x2 + 3·x3
POL(topA(x1, x2, x3)) = 3·x3
POL(topB(x1, x2, x3)) = 3·x3
topA(i, x, S2(y)) → topB(i, x, N2(y))
topB(i, N1(x), T2(y)) → TOPB(i, N1(x), S2(y))
topB(i, N1(x), y) → topA(1, T1(x), y)
topB(i, x, N2(y)) → TOPB(i, x, N2(C(y)))
topA(i, N1(x), y) → topA(1, T1(x), y)
topA(i, x, N2(y)) → topB(0, x, T2(y))
topA(i, S1(x), y) → topA(i, N1(x), y)
topA(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topB(i, x, S2(y)) → TOPB(i, x, N2(y))
topB(1, T1(x), T2(y)) → topB(1, T1(x), S2(y))
topA(i, N1(x), y) → TOPA(i, N1(C(x)), y)
topA(i, N1(x), T2(y)) → topB(i, N1(x), S2(y))
topB(i, x, N2(y)) → TOPB(0, x, T2(y))
topB(i, x, S2(y)) → TOPB(i, x, S2(D(y)))
topB(i, S1(x), y) → topA(i, N1(x), y)