YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 RelADPP
↳5 RelADPReductionPairProof (⇔, 47 ms)
↳6 RelADPP
↳7 RelADPDepGraphProof (⇔, 0 ms)
↳8 RelADPP
↳9 RelADPReductionPairProof (⇔, 0 ms)
↳10 RelADPP
↳11 RelADPDepGraphProof (⇔, 0 ms)
↳12 TRUE
topB(i, N1, y) → topA(1, T1, y)
topA(i, x, N2) → topB(0, x, T2)
topB(i, S1, y) → topA(i, N1, y)
topA(i, x, S2) → topB(i, x, N2)
topA(i, N1, T2) → topB(i, N1, S2)
topA(1, T1, T2) → topB(1, T1, S2)
topB(i, N1, T2) → topB(i, N1, S2)
topA(i, S1, y) → topA(i, N1, y)
topB(1, T1, T2) → topB(1, T1, S2)
topB(i, x, S2) → topB(i, x, N2)
topB(i, x, N2) → topB(0, x, T2)
topA(i, N1, y) → topA(1, T1, y)
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
topB(i, N1, y) → TOPA(1, T1, y)
topA(i, x, N2) → TOPB(0, x, T2)
topB(i, S1, y) → TOPA(i, N1, y)
topA(i, x, S2) → TOPB(i, x, N2)
topA(i, N1, T2) → TOPB(i, N1, S2)
topA(1, T1, T2) → TOPB(1, T1, S2)
topB(i, N1, T2) → TOPB(i, N1, S2)
topA(i, S1, y) → TOPA(i, N1, y)
topB(1, T1, T2) → TOPB(1, T1, S2)
topB(i, x, S2) → TOPB(i, x, N2)
topB(i, x, N2) → TOPB(0, x, T2)
topA(i, N1, y) → TOPA(1, T1, y)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.
topA(i, N1, T2) → TOPB(i, N1, S2)
topA(i, x, N2) → TOPB(0, x, T2)
topB(i, S1, y) → TOPA(i, N1, y)
topA(i, x, S2) → TOPB(i, x, N2)
topA(1, T1, T2) → TOPB(1, T1, S2)
topB(i, N1, y) → TOPA(1, T1, y)
topA(i, S1, y) → topA(i, N1, y)
topB(i, x, N2) → TOPB(0, x, T2)
topB(i, x, S2) → TOPB(i, x, N2)
topB(i, N1, T2) → TOPB(i, N1, S2)
topB(1, T1, T2) → topB(1, T1, S2)
topA(i, N1, y) → TOPA(1, T1, y)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
topB(i, S1, y) → TOPA(i, N1, y)
topA(i, S1, y) → topA(i, N1, y)
topB(1, T1, T2) → topB(1, T1, S2)
topA(i, N1, T2) → TOPB(i, N1, S2)
topA(i, x, N2) → TOPB(0, x, T2)
topA(i, x, S2) → TOPB(i, x, N2)
topA(1, T1, T2) → TOPB(1, T1, S2)
topB(i, N1, y) → TOPA(1, T1, y)
topB(i, x, N2) → TOPB(0, x, T2)
topB(i, x, S2) → TOPB(i, x, N2)
topB(i, N1, T2) → TOPB(i, N1, S2)
topA(i, N1, y) → TOPA(1, T1, y)
POL(0) = 0
POL(1) = 2
POL(N1) = 2
POL(N2) = 2
POL(S1) = 3
POL(S2) = 2
POL(T1) = 0
POL(T2) = 2
POL(TOPA(x1, x2, x3)) = 1 + 3·x1 + 3·x2 + 3·x3
POL(TOPB(x1, x2, x3)) = 1 + 3·x1 + 3·x2 + 3·x3
POL(topA(x1, x2, x3)) = 2 + 2·x2 + 3·x3
POL(topB(x1, x2, x3)) = 2·x2 + 3·x3
topA(i, N1, T2) → TOPB(i, N1, S2)
topA(i, x, N2) → TOPB(0, x, T2)
topA(i, x, S2) → TOPB(i, x, N2)
topA(1, T1, T2) → TOPB(1, T1, S2)
topB(i, N1, y) → TOPA(1, T1, y)
topA(i, S1, y) → topA(i, N1, y)
topB(i, x, N2) → TOPB(0, x, T2)
topB(i, x, S2) → TOPB(i, x, N2)
topB(i, N1, T2) → TOPB(i, N1, S2)
topB(1, T1, T2) → topB(1, T1, S2)
topB(i, S1, y) → topA(i, N1, y)
topA(i, N1, y) → TOPA(1, T1, y)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.
topA(i, x, N2) → TOPB(0, x, T2)
topA(i, x, S2) → TOPB(i, x, N2)
topA(1, T1, T2) → TOPB(1, T1, S2)
topA(i, N1, T2) → topB(i, N1, S2)
topB(i, N1, y) → TOPA(1, T1, y)
topA(i, S1, y) → topA(i, N1, y)
topB(i, x, N2) → TOPB(0, x, T2)
topB(i, x, S2) → TOPB(i, x, N2)
topB(i, N1, T2) → TOPB(i, N1, S2)
topB(1, T1, T2) → topB(1, T1, S2)
topB(i, S1, y) → topA(i, N1, y)
topA(i, N1, y) → topA(1, T1, y)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
topA(i, N1, T2) → topB(i, N1, S2)
topB(i, N1, y) → TOPA(1, T1, y)
topA(i, S1, y) → topA(i, N1, y)
topB(1, T1, T2) → topB(1, T1, S2)
topB(i, S1, y) → topA(i, N1, y)
topA(i, N1, y) → topA(1, T1, y)
topA(i, x, N2) → TOPB(0, x, T2)
topA(i, x, S2) → TOPB(i, x, N2)
topA(1, T1, T2) → TOPB(1, T1, S2)
topB(i, x, N2) → TOPB(0, x, T2)
topB(i, x, S2) → TOPB(i, x, N2)
topB(i, N1, T2) → TOPB(i, N1, S2)
POL(0) = 0
POL(1) = 3
POL(N1) = 2
POL(N2) = 0
POL(S1) = 0
POL(S2) = 0
POL(T1) = 0
POL(T2) = 0
POL(TOPA(x1, x2, x3)) = 3·x2
POL(TOPB(x1, x2, x3)) = 3·x2 + 2·x3
POL(topA(x1, x2, x3)) = 0
POL(topB(x1, x2, x3)) = 0
topA(i, x, N2) → TOPB(0, x, T2)
topA(i, x, S2) → TOPB(i, x, N2)
topA(1, T1, T2) → TOPB(1, T1, S2)
topA(i, S1, y) → topA(i, N1, y)
topB(i, x, N2) → TOPB(0, x, T2)
topB(i, x, S2) → TOPB(i, x, N2)
topB(i, N1, T2) → TOPB(i, N1, S2)
topB(1, T1, T2) → topB(1, T1, S2)
topB(i, S1, y) → topA(i, N1, y)
topA(i, N1, T2) → topB(i, N1, S2)
topB(i, N1, y) → topA(1, T1, y)
topA(i, N1, y) → topA(1, T1, y)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.