YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 RelADPP
↳5 RelADPReductionPairProof (⇔, 47 ms)
↳6 RelADPP
↳7 RelADPReductionPairProof (⇔, 0 ms)
↳8 RelADPP
↳9 DAbsisEmptyProof (⇔, 0 ms)
↳10 YES
f(a, g(y), z) → f(b, g(y), g(y))
f(b, g(y), z) → f(a, y, z)
a → b
f(x, y, z) → f(x, y, g(z))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
f(a, g(y), z) → F(b, g(y), g(y))
f(b, g(y), z) → F(a, y, z)
f(b, g(y), z) → f(A, y, z)
a → b
f(x, y, z) → F(x, y, g(z))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.
f(a, g(y), z) → F(b, g(y), g(y))
f(b, g(y), z) → F(a, y, z)
a → b
f(b, g(y), z) → f(a, y, z)
f(x, y, z) → F(x, y, g(z))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
f(b, g(y), z) → F(a, y, z)
a → b
f(b, g(y), z) → f(a, y, z)
f(a, g(y), z) → F(b, g(y), g(y))
f(x, y, z) → F(x, y, g(z))
POL(A) = 2
POL(F(x1, x2, x3)) = 2 + 3·x1 + 2·x2
POL(a) = 2
POL(b) = 2
POL(f(x1, x2, x3)) = x2
POL(g(x1)) = 1 + 2·x1
f(a, g(y), z) → F(b, g(y), g(y))
a → b
f(x, y, z) → F(x, y, g(z))
f(b, g(y), z) → f(a, y, z)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
f(a, g(y), z) → F(b, g(y), g(y))
a → b
f(b, g(y), z) → f(a, y, z)
POL(A) = 3
POL(F(x1, x2, x3)) = 2 + 2·x1 + 2·x2
POL(a) = 3
POL(b) = 0
POL(f(x1, x2, x3)) = x2
POL(g(x1)) = 1 + 3·x1
a → b
f(x, y, z) → F(x, y, g(z))
f(a, g(y), z) → f(b, g(y), g(y))
f(b, g(y), z) → f(a, y, z)