YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 RelADPP
↳5 RelADPCleverAfsProof (⇒, 58 ms)
↳6 QDP
↳7 MRRProof (⇔, 0 ms)
↳8 QDP
↳9 QDPOrderProof (⇔, 0 ms)
↳10 QDP
↳11 PisEmptyProof (⇔, 0 ms)
↳12 YES
f(g(f(x))) → f(g(g(g(f(x)))))
g(x) → g(g(x))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
f(g(f(x))) → F(g(g(g(f(x)))))
f(g(f(x))) → f(G(g(g(f(x)))))
f(g(f(x))) → f(g(G(g(f(x)))))
f(g(f(x))) → f(g(g(G(f(x)))))
f(g(f(x))) → f(g(g(g(F(x)))))
g(x) → G(G(x))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.
f(g(f(x))) → f(g(g(g(f(x)))))
f(g(f(x))) → f(g(g(g(F(x)))))
f(g(f(x))) → F(g(g(g(f(x)))))
g(x) → g(g(x))
Furthermore, We use an argument filter [LPAR04].
Filtering:f_1 =
F_1 =
g_1 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
F(x1) = F(x1)
g(x1) = x1
f(x1) = f(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
F1 > f1
F1: [1]
f1: multiset
F0(g0(f0(x))) → F0(x)
F0(g0(f0(x))) → F0(g0(g0(g0(f0(x)))))
f0(g0(f0(x))) → f0(g0(g0(g0(f0(x)))))
g0(x) → g0(g0(x))
F0(g0(f0(x))) → F0(x)
POL(F0(x1)) = 2·x1
POL(f0(x1)) = 2 + 2·x1
POL(g0(x1)) = x1
F0(g0(f0(x))) → F0(g0(g0(g0(f0(x)))))
f0(g0(f0(x))) → f0(g0(g0(g0(f0(x)))))
g0(x) → g0(g0(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F0(g0(f0(x))) → F0(g0(g0(g0(f0(x)))))
The value of delta used in the strict ordering is 15/256.
POL(F0(x1)) = x1
POL(f0(x1)) = [1/4]
POL(g0(x1)) = [1/4]x1
f0(g0(f0(x))) → f0(g0(g0(g0(f0(x)))))
g0(x) → g0(g0(x))
f0(g0(f0(x))) → f0(g0(g0(g0(f0(x)))))
g0(x) → g0(g0(x))