YES
0 RelTRS
↳1 RelTRSRRRProof (⇔, 0 ms)
↳2 RelTRS
↳3 RelTRSRRRProof (⇔, 0 ms)
↳4 RelTRS
↳5 RIsEmptyProof (⇔, 0 ms)
↳6 YES
s(a(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
POL(a(x1)) = 1 + x1
POL(b(x1)) = 1 + x1
POL(f(x1, x2)) = x1 + x2
POL(s(x1)) = x1
Rules from S:
b(b(x)) → a(x)
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
POL(a(x1)) = 1 + x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1 + x2
POL(s(x1)) = x1
Rules from S:
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))