YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPReductionPairProof (⇔, 29 ms)
↳7 RelADPP
↳8 RelADPReductionPairProof (⇔, 0 ms)
↳9 RelADPP
↳10 DAbsisEmptyProof (⇔, 0 ms)
↳11 YES
↳12 RelADPP
↳13 RelADPReductionPairProof (⇔, 26 ms)
↳14 RelADPP
↳15 RelADPReductionPairProof (⇔, 0 ms)
↳16 RelADPP
↳17 DAbsisEmptyProof (⇔, 0 ms)
↳18 YES
↳19 RelADPP
↳20 RelADPReductionPairProof (⇔, 36 ms)
↳21 RelADPP
↳22 DAbsisEmptyProof (⇔, 0 ms)
↳23 YES
f(el(x), y) → f(x, el(y))
l(el(x)) → el(l(x))
f(x, y) → f(l(x), y)
el(r(x)) → r(el(x))
f(x, y) → f(x, r(y))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
f(el(x), y) → F(x, el(y))
f(el(x), y) → f(x, EL(y))
l(el(x)) → EL(L(x))
f(x, y) → F(L(x), y)
el(r(x)) → r(EL(x))
f(x, y) → F(x, r(y))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
2 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.
f(el(x), y) → f(x, el(y))
f(el(x), y) → F(x, el(y))
f(x, y) → F(x, r(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(x, y) → F(L(x), y)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
f(el(x), y) → f(x, el(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(el(x), y) → F(x, el(y))
f(x, y) → F(x, r(y))
f(x, y) → F(L(x), y)
POL(EL(x1)) = 0
POL(F(x1, x2)) = 1
POL(L(x1)) = 0
POL(el(x1)) = 3 + x1
POL(f(x1, x2)) = 0
POL(l(x1)) = 3 + x1
POL(r(x1)) = 0
f(el(x), y) → F(x, el(y))
f(el(x), y) → f(x, el(y))
f(x, y) → F(x, r(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(x, y) → F(L(x), y)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
f(el(x), y) → F(x, el(y))
f(el(x), y) → f(x, el(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
POL(EL(x1)) = 2 + x12
POL(F(x1, x2)) = 2 + x1
POL(L(x1)) = 0
POL(el(x1)) = 1 + x1
POL(f(x1, x2)) = 0
POL(l(x1)) = x1
POL(r(x1)) = 2
f(el(x), y) → f(x, el(y))
f(x, y) → F(x, r(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(x, y) → F(L(x), y)
f(el(x), y) → f(x, el(y))
f(el(x), y) → F(x, el(y))
f(x, y) → F(x, r(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(x, y) → F(L(x), y)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
f(el(x), y) → f(x, el(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(el(x), y) → F(x, el(y))
f(x, y) → F(x, r(y))
f(x, y) → F(L(x), y)
POL(EL(x1)) = 0
POL(F(x1, x2)) = 1
POL(L(x1)) = 0
POL(el(x1)) = 3 + x1
POL(f(x1, x2)) = 0
POL(l(x1)) = 3 + x1
POL(r(x1)) = 0
f(el(x), y) → F(x, el(y))
f(el(x), y) → f(x, el(y))
f(x, y) → F(x, r(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(x, y) → F(L(x), y)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
f(el(x), y) → F(x, el(y))
f(el(x), y) → f(x, el(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
POL(EL(x1)) = 2 + x12
POL(F(x1, x2)) = 2 + x1
POL(L(x1)) = 0
POL(el(x1)) = 1 + x1
POL(f(x1, x2)) = 0
POL(l(x1)) = x1
POL(r(x1)) = 2
f(el(x), y) → f(x, el(y))
f(x, y) → F(x, r(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(x, y) → F(L(x), y)
f(el(x), y) → f(x, el(y))
f(el(x), y) → f(x, EL(y))
f(x, y) → F(x, r(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(x, y) → F(L(x), y)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
f(el(x), y) → f(x, el(y))
f(el(x), y) → f(x, EL(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
POL(EL(x1)) = 3
POL(F(x1, x2)) = 3 + 3·x1
POL(L(x1)) = 0
POL(el(x1)) = 3 + 3·x1
POL(f(x1, x2)) = 0
POL(l(x1)) = x1
POL(r(x1)) = 2
f(el(x), y) → f(x, el(y))
f(x, y) → F(x, r(y))
l(el(x)) → el(l(x))
el(r(x)) → r(el(x))
f(x, y) → F(L(x), y)