(0) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
The relative TRS consists of the following S rules:
rand(x) → rand(s(x))
rand(x) → x
(1) RelTRStoRelADPProof (EQUIVALENT transformation)
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
(2) Obligation:
Relative ADP Problem with
absolute ADPs:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → LE(x, y)
minus(0, y) → 0
minus(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
minus(s(x), y) → if_minus(LE(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(MINUS(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
mod(s(x), s(y)) → if_mod(LE(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → MOD(minus(x, y), s(y))
if_mod(true, s(x), s(y)) → mod(MINUS(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
and relative ADPs:
rand(x) → RAND(s(x))
rand(x) → x
(3) RelADPDepGraphProof (EQUIVALENT transformation)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.
(4) Complex Obligation (AND)
(5) Obligation:
Relative ADP Problem with
absolute ADPs:
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_minus(false, s(x), y) → s(minus(x, y))
le(s(x), 0) → false
mod(0, y) → 0
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, y) → true
mod(s(x), 0) → 0
le(s(x), s(y)) → LE(x, y)
if_minus(true, s(x), y) → 0
minus(0, y) → 0
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(6) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
mod_2 =
if_mod_3 =
true =
LE_2 = 0
le_2 = 0, 1
0 =
minus_2 = 1
if_minus_3 = 0, 2
rand_1 =
false =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
LE(x1, x2) = LE(x2)
s(x1) = s(x1)
minus(x1, x2) = x1
if_minus(x1, x2, x3) = x2
le(x1, x2) = le
0 = 0
false = false
if_mod(x1, x2, x3) = if_mod(x1, x2, x3)
true = true
mod(x1, x2) = mod(x1, x2)
Recursive path order with status [RPO].
Quasi-Precedence:
[ifmod3, mod2] > [LE1, s1] > [le, 0, false] > true
Status:
LE1: [1]
s1: [1]
le: multiset
0: multiset
false: multiset
ifmod3: [2,1,3]
true: multiset
mod2: [1,2]
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s0(y)) → LE(y)
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
le → false0
if_mod0(false0, s0(x), s0(y)) → s0(x)
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod0(le, s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
mod0(00, y) → 00
if_mod0(true0, s0(x), s0(y)) → mod0(minus(x), s0(y))
le → true0
mod0(s0(x), 00) → 00
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(8) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(LE(x1)) = x1
POL(false0) = 0
POL(if_minus(x1)) = x1
POL(if_mod0(x1, x2, x3)) = x1 + 2·x2 + 2·x3
POL(le) = 0
POL(minus(x1)) = x1
POL(mod0(x1, x2)) = 2·x1 + 2·x2
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 0
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s0(y)) → LE(y)
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
le → false0
if_mod0(false0, s0(x), s0(y)) → s0(x)
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod0(le, s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
mod0(00, y) → 00
if_mod0(true0, s0(x), s0(y)) → mod0(minus(x), s0(y))
le → true0
mod0(s0(x), 00) → 00
Q is empty.
We have to consider all (P,Q,R)-chains.
(10) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
le → false0
if_mod0(false0, s0(x), s0(y)) → s0(x)
mod0(00, y) → 00
mod0(s0(x), 00) → 00
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(LE(x1)) = x1
POL(false0) = 1
POL(if_minus(x1)) = x1
POL(if_mod0(x1, x2, x3)) = x1 + 2·x2 + 2·x3
POL(le) = 2
POL(minus(x1)) = x1
POL(mod0(x1, x2)) = 2 + 2·x1 + 2·x2
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 2
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE(s0(y)) → LE(y)
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod0(le, s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
if_mod0(true0, s0(x), s0(y)) → mod0(minus(x), s0(y))
le → true0
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
LE(s0(y)) → LE(y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( mod0(x1, x2) ) = 2x1 + x2 + 2 |
POL( if_mod0(x1, ..., x3) ) = 2x1 + x2 + x3 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
minus(s0(x)) → if_minus(s0(x))
le → le
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod0(le, s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
if_mod0(true0, s0(x), s0(y)) → mod0(minus(x), s0(y))
le → true0
(13) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod0(le, s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
if_mod0(true0, s0(x), s0(y)) → mod0(minus(x), s0(y))
le → true0
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(15) YES
(16) Obligation:
Relative ADP Problem with
absolute ADPs:
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
if_mod(false, s(x), s(y)) → s(x)
if_minus(false, s(x), y) → s(MINUS(x, y))
if_minus(true, s(x), y) → 0
minus(0, y) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
mod(0, y) → 0
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
le(0, y) → true
mod(s(x), 0) → 0
minus(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(17) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:MINUS_2 = 1
if_mod_3 = 2
true =
IF_MINUS_3 = 0, 2
if_minus_3 = 0, 2
rand_1 =
false =
s_1 =
mod_2 = 1
le_2 = 0, 1
0 =
minus_2 = 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
IF_MINUS(x1, x2, x3) = x2
false = false
s(x1) = s(x1)
MINUS(x1, x2) = MINUS(x1)
le(x1, x2) = le
minus(x1, x2) = x1
if_minus(x1, x2, x3) = x2
0 = 0
if_mod(x1, x2, x3) = if_mod(x1, x2)
true = true
mod(x1, x2) = mod(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[s1, MINUS1, 0, mod1] > ifmod2 > [false, le, true]
Status:
false: multiset
s1: multiset
MINUS1: multiset
le: multiset
0: multiset
ifmod2: [2,1]
true: multiset
mod1: multiset
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_MINUS(s0(x)) → MINUS(x)
MINUS(s0(x)) → IF_MINUS(s0(x))
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
le → false0
if_mod(false0, s0(x)) → s0(x)
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod(s0(x)) → if_mod(le, s0(x))
if_minus(s0(x)) → s0(minus(x))
mod(00) → 00
if_mod(true0, s0(x)) → mod(minus(x))
le → true0
mod(s0(x)) → 00
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(IF_MINUS(x1)) = x1
POL(MINUS(x1)) = x1
POL(false0) = 0
POL(if_minus(x1)) = x1
POL(if_mod(x1, x2)) = x1 + 2·x2
POL(le) = 0
POL(minus(x1)) = x1
POL(mod(x1)) = 2·x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 0
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_MINUS(s0(x)) → MINUS(x)
MINUS(s0(x)) → IF_MINUS(s0(x))
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
le → false0
if_mod(false0, s0(x)) → s0(x)
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod(s0(x)) → if_mod(le, s0(x))
if_minus(s0(x)) → s0(minus(x))
mod(00) → 00
if_mod(true0, s0(x)) → mod(minus(x))
le → true0
mod(s0(x)) → 00
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
le → false0
mod(00) → 00
mod(s0(x)) → 00
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(IF_MINUS(x1)) = x1
POL(MINUS(x1)) = x1
POL(false0) = 0
POL(if_minus(x1)) = x1
POL(if_mod(x1, x2)) = 2·x1 + x2
POL(le) = 1
POL(minus(x1)) = x1
POL(mod(x1)) = 2 + x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_MINUS(s0(x)) → MINUS(x)
MINUS(s0(x)) → IF_MINUS(s0(x))
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
if_mod(false0, s0(x)) → s0(x)
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod(s0(x)) → if_mod(le, s0(x))
if_minus(s0(x)) → s0(minus(x))
if_mod(true0, s0(x)) → mod(minus(x))
le → true0
Q is empty.
We have to consider all (P,Q,R)-chains.
(23) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
if_mod(false0, s0(x)) → s0(x)
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(IF_MINUS(x1)) = x1
POL(MINUS(x1)) = x1
POL(false0) = 2
POL(if_minus(x1)) = x1
POL(if_mod(x1, x2)) = x1 + 2·x2
POL(le) = 0
POL(minus(x1)) = x1
POL(mod(x1)) = 2·x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 0
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_MINUS(s0(x)) → MINUS(x)
MINUS(s0(x)) → IF_MINUS(s0(x))
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod(s0(x)) → if_mod(le, s0(x))
if_minus(s0(x)) → s0(minus(x))
if_mod(true0, s0(x)) → mod(minus(x))
le → true0
Q is empty.
We have to consider all (P,Q,R)-chains.
(25) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MINUS(s0(x)) → IF_MINUS(s0(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF_MINUS(
x1) =
x1
s0(
x1) =
s0(
x1)
MINUS(
x1) =
MINUS(
x1)
minus(
x1) =
minus(
x1)
if_minus(
x1) =
if_minus(
x1)
le =
le
rand0(
x1) =
rand0
00 =
00
mod(
x1) =
mod
if_mod(
x1,
x2) =
if_mod
true0 =
true0
Recursive path order with status [RPO].
Quasi-Precedence:
[mod, ifmod] > [s01, MINUS1, minus1, ifminus1, le] > 00 > rand0
[mod, ifmod] > [s01, MINUS1, minus1, ifminus1, le] > true0 > rand0
Status:
s01: [1]
MINUS1: [1]
minus1: [1]
ifminus1: [1]
le: multiset
rand0: multiset
00: multiset
mod: []
ifmod: []
true0: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
minus(s0(x)) → if_minus(s0(x))
le → le
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod(s0(x)) → if_mod(le, s0(x))
if_minus(s0(x)) → s0(minus(x))
if_mod(true0, s0(x)) → mod(minus(x))
le → true0
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_MINUS(s0(x)) → MINUS(x)
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod(s0(x)) → if_mod(le, s0(x))
if_minus(s0(x)) → s0(minus(x))
if_mod(true0, s0(x)) → mod(minus(x))
le → true0
Q is empty.
We have to consider all (P,Q,R)-chains.
(27) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(28) TRUE
(29) Obligation:
Relative ADP Problem with
absolute ADPs:
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
if_mod(false, s(x), s(y)) → s(x)
mod(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
if_minus(true, s(x), y) → 0
minus(0, y) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → MOD(minus(x, y), s(y))
if_minus(false, s(x), y) → s(minus(x, y))
mod(0, y) → 0
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
le(0, y) → true
mod(s(x), 0) → 0
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(30) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:if_mod_3 = 0
true =
IF_MOD_3 = 0, 2
if_minus_3 = 0, 2
rand_1 =
false =
s_1 =
mod_2 =
le_2 = 0, 1
0 =
minus_2 = 1
MOD_2 = 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MOD(x1, x2) = MOD(x1)
s(x1) = s(x1)
IF_MOD(x1, x2, x3) = IF_MOD(x2)
le(x1, x2) = le
true = true
minus(x1, x2) = x1
if_minus(x1, x2, x3) = x2
0 = 0
false = false
if_mod(x1, x2, x3) = if_mod(x2, x3)
mod(x1, x2) = mod(x1, x2)
Recursive path order with status [RPO].
Quasi-Precedence:
[MOD1, s1, IFMOD1] > le > [true, 0, false]
[MOD1, s1, IFMOD1] > [ifmod2, mod2] > [true, 0, false]
Status:
MOD1: multiset
s1: multiset
IFMOD1: multiset
le: []
true: multiset
0: multiset
false: multiset
ifmod2: [1,2]
mod2: [1,2]
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MOD(s0(x)) → IF_MOD(s0(x))
IF_MOD(s0(x)) → MOD(minus(x))
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
le → false0
if_mod(s0(x), s0(y)) → s0(x)
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
mod0(00, y) → 00
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
le → true0
mod0(s0(x), 00) → 00
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(32) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
le → false0
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(IF_MOD(x1)) = 2·x1
POL(MOD(x1)) = 2·x1
POL(false0) = 0
POL(if_minus(x1)) = x1
POL(if_mod(x1, x2)) = x1 + x2
POL(le) = 2
POL(minus(x1)) = x1
POL(mod0(x1, x2)) = x1 + x2
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 2
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MOD(s0(x)) → IF_MOD(s0(x))
IF_MOD(s0(x)) → MOD(minus(x))
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
if_mod(s0(x), s0(y)) → s0(x)
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
mod0(00, y) → 00
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
le → true0
mod0(s0(x), 00) → 00
Q is empty.
We have to consider all (P,Q,R)-chains.
(34) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
le → true0
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(IF_MOD(x1)) = 2 + 2·x1
POL(MOD(x1)) = 2 + 2·x1
POL(if_minus(x1)) = x1
POL(if_mod(x1, x2)) = 2·x1 + 2·x2
POL(le) = 2
POL(minus(x1)) = x1
POL(mod0(x1, x2)) = 2·x1 + 2·x2
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MOD(s0(x)) → IF_MOD(s0(x))
IF_MOD(s0(x)) → MOD(minus(x))
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
if_mod(s0(x), s0(y)) → s0(x)
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
mod0(00, y) → 00
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
mod0(s0(x), 00) → 00
Q is empty.
We have to consider all (P,Q,R)-chains.
(36) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
if_mod(s0(x), s0(y)) → s0(x)
mod0(00, y) → 00
mod0(s0(x), 00) → 00
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(IF_MOD(x1)) = 2 + 2·x1
POL(MOD(x1)) = 2 + 2·x1
POL(if_minus(x1)) = x1
POL(if_mod(x1, x2)) = 1 + 2·x1 + x2
POL(le) = 0
POL(minus(x1)) = x1
POL(mod0(x1, x2)) = 1 + 2·x1 + x2
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MOD(s0(x)) → IF_MOD(s0(x))
IF_MOD(s0(x)) → MOD(minus(x))
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
Q is empty.
We have to consider all (P,Q,R)-chains.
(38) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF_MOD(s0(x)) → MOD(minus(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( mod0(x1, x2) ) = max{0, 2x2 - 2} |
POL( if_mod(x1, x2) ) = max{0, 2x2 - 2} |
POL( IF_MOD(x1) ) = 2x1 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
minus(s0(x)) → if_minus(s0(x))
le → le
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MOD(s0(x)) → IF_MOD(s0(x))
The TRS R consists of the following rules:
minus(s0(x)) → if_minus(s0(x))
le → le
rand0(x) → rand0(s0(x))
if_minus(s0(x)) → 00
minus(00) → 00
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
if_minus(s0(x)) → s0(minus(x))
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
Q is empty.
We have to consider all (P,Q,R)-chains.
(40) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(41) TRUE