(0) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
low(n, nil) → nil
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, low(n, x))
if_low(false, n, add(m, x)) → low(n, x)
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
if_high(false, n, add(m, x)) → add(m, high(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
The relative TRS consists of the following S rules:
rand(x) → rand(s(x))
rand(x) → x
(1) RelTRStoRelADPProof (EQUIVALENT transformation)
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
(2) Obligation:
Relative ADP Problem with
absolute ADPs:
minus(x, 0) → x
minus(s(x), s(y)) → MINUS(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
quot(s(x), s(y)) → s(quot(MINUS(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → LE(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, APP(x, y))
low(n, nil) → nil
low(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
low(n, add(m, x)) → if_low(LE(m, n), n, add(m, x))
if_low(true, n, add(m, x)) → add(m, LOW(n, x))
if_low(false, n, add(m, x)) → LOW(n, x)
high(n, nil) → nil
high(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
high(n, add(m, x)) → if_high(LE(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → HIGH(n, x)
if_high(false, n, add(m, x)) → add(m, HIGH(n, x))
quicksort(nil) → nil
quicksort(add(n, x)) → APP(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
quicksort(add(n, x)) → app(QUICKSORT(low(n, x)), add(n, quicksort(high(n, x))))
quicksort(add(n, x)) → app(quicksort(LOW(n, x)), add(n, quicksort(high(n, x))))
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, QUICKSORT(high(n, x))))
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(HIGH(n, x))))
and relative ADPs:
rand(x) → RAND(s(x))
rand(x) → x
(3) RelADPDepGraphProof (EQUIVALENT transformation)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
7 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 7 subproblems.
(4) Complex Obligation (AND)
(5) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(add(n, x), y) → add(n, APP(x, y))
le(s(x), s(y)) → le(x, y)
if_low(true, n, add(m, x)) → add(m, low(n, x))
le(s(x), 0) → false
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
if_high(true, n, add(m, x)) → high(n, x)
quot(0, s(y)) → 0
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
low(n, nil) → nil
if_high(false, n, add(m, x)) → add(m, high(n, x))
app(nil, y) → y
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
minus(x, 0) → x
quicksort(nil) → nil
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(6) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:low_2 = 0
true =
app_2 =
add_2 =
quicksort_1 =
if_high_3 = 0, 1
rand_1 =
APP_2 = 1
quot_2 = 0, 1
false =
nil =
s_1 =
if_low_3 = 0, 1
le_2 = 0, 1
0 =
minus_2 = 1
high_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
APP(x1, x2) = APP(x1)
add(x1, x2) = add(x1, x2)
quot(x1, x2) = quot
s(x1) = x1
minus(x1, x2) = x1
le(x1, x2) = le
if_low(x1, x2, x3) = x3
true = true
low(x1, x2) = x2
0 = 0
false = false
high(x1, x2) = x2
nil = nil
if_high(x1, x2, x3) = x3
app(x1, x2) = app(x1, x2)
quicksort(x1) = quicksort(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
APP1 > nil
[quot, 0] > [le, true] > false > nil
quicksort1 > [add2, app2] > [le, true] > false > nil
Status:
APP1: multiset
add2: [1,2]
quot: []
le: multiset
true: multiset
0: multiset
false: multiset
nil: multiset
app2: [1,2]
quicksort1: multiset
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(add0(n, x)) → APP(x)
The TRS R consists of the following rules:
quot → s0(quot)
le → le
if_low(add0(m, x)) → add0(m, low(x))
le → false0
high(nil0) → nil0
high(add0(m, x)) → if_high(add0(m, x))
rand0(x) → rand0(s0(x))
if_low(add0(m, x)) → low(x)
if_high(add0(m, x)) → high(x)
quot → 00
low(add0(m, x)) → if_low(add0(m, x))
low(nil0) → nil0
if_high(add0(m, x)) → add0(m, high(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add0(n, x)) → app0(quicksort0(low(x)), add0(n, quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(8) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
APP(add0(n, x)) → APP(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
APP(
x1) =
APP(
x1)
add0(
x1,
x2) =
add0(
x1,
x2)
quot =
quot
s0(
x1) =
x1
le =
le
if_low(
x1) =
if_low(
x1)
low(
x1) =
low(
x1)
false0 =
false0
high(
x1) =
x1
nil0 =
nil0
if_high(
x1) =
x1
rand0(
x1) =
x1
00 =
00
app0(
x1,
x2) =
app0(
x1,
x2)
minus(
x1) =
minus(
x1)
true0 =
true0
quicksort0(
x1) =
quicksort0(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
quot > 00 > [APP1, add02, iflow1, low1]
[le, false0] > true0 > [APP1, add02, iflow1, low1]
minus1 > [APP1, add02, iflow1, low1]
quicksort01 > nil0 > [APP1, add02, iflow1, low1]
quicksort01 > app02 > [APP1, add02, iflow1, low1]
Status:
APP1: multiset
add02: multiset
quot: multiset
le: multiset
iflow1: multiset
low1: multiset
false0: multiset
nil0: multiset
00: multiset
app02: [1,2]
minus1: [1]
true0: multiset
quicksort01: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot → s0(quot)
le → le
if_low(add0(m, x)) → add0(m, low(x))
le → false0
high(nil0) → nil0
high(add0(m, x)) → if_high(add0(m, x))
rand0(x) → rand0(s0(x))
if_low(add0(m, x)) → low(x)
if_high(add0(m, x)) → high(x)
quot → 00
low(add0(m, x)) → if_low(add0(m, x))
low(nil0) → nil0
if_high(add0(m, x)) → add0(m, high(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add0(n, x)) → app0(quicksort0(low(x)), add0(n, quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
(9) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot → s0(quot)
le → le
if_low(add0(m, x)) → add0(m, low(x))
le → false0
high(nil0) → nil0
high(add0(m, x)) → if_high(add0(m, x))
rand0(x) → rand0(s0(x))
if_low(add0(m, x)) → low(x)
if_high(add0(m, x)) → high(x)
quot → 00
low(add0(m, x)) → if_low(add0(m, x))
low(nil0) → nil0
if_high(add0(m, x)) → add0(m, high(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add0(n, x)) → app0(quicksort0(low(x)), add0(n, quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(10) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(11) YES
(12) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(s(x), s(y)) → le(x, y)
if_low(true, n, add(m, x)) → add(m, low(n, x))
le(s(x), 0) → false
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
if_high(true, n, add(m, x)) → high(n, x)
quot(0, s(y)) → 0
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
low(n, nil) → nil
if_high(false, n, add(m, x)) → add(m, high(n, x))
app(add(n, x), y) → add(n, app(x, y))
app(nil, y) → y
le(0, y) → true
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
minus(x, 0) → x
minus(s(x), s(y)) → MINUS(x, y)
quicksort(nil) → nil
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(13) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:low_2 = 0, 1
MINUS_2 =
true =
add_2 = 0
app_2 = 0
quicksort_1 =
if_high_3 = 0, 1, 2
rand_1 =
quot_2 = 1
false =
nil =
s_1 =
if_low_3 = 0, 1, 2
le_2 = 1
0 =
minus_2 = 1
high_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = MINUS(x1, x2)
s(x1) = s(x1)
quot(x1, x2) = x1
minus(x1, x2) = x1
le(x1, x2) = x1
if_low(x1, x2, x3) = if_low
true = true
add(x1, x2) = x2
low(x1, x2) = low
0 = 0
false = false
high(x1, x2) = high
nil = nil
if_high(x1, x2, x3) = if_high
app(x1, x2) = x2
quicksort(x1) = quicksort(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
MINUS2 > [iflow, true, low, false, high, nil, ifhigh]
s1 > [iflow, true, low, false, high, nil, ifhigh]
0 > [iflow, true, low, false, high, nil, ifhigh]
quicksort1 > [iflow, true, low, false, high, nil, ifhigh]
Status:
MINUS2: [2,1]
s1: [1]
iflow: []
true: multiset
low: []
0: multiset
false: multiset
high: []
nil: multiset
ifhigh: []
quicksort1: multiset
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS0(s0(x), s0(y)) → MINUS0(x, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le(s0(x)) → le(x)
if_low → add(low)
le(s0(x)) → false0
high → nil0
high → if_high
rand0(x) → rand0(s0(x))
if_low → low
if_high → high
quot(00) → 00
low → if_low
low → nil0
if_high → add(high)
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
le(00) → true0
quicksort0(add(x)) → app(add(quicksort0(high)))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(15) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
low → nil0
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(MINUS0(x1, x2)) = x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = 2·x1
POL(false0) = 0
POL(high) = 0
POL(if_high) = 0
POL(if_low) = 2
POL(le(x1)) = 2·x1
POL(low) = 2
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quicksort0(x1)) = x1
POL(quot(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 0
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS0(s0(x), s0(y)) → MINUS0(x, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le(s0(x)) → le(x)
if_low → add(low)
le(s0(x)) → false0
high → nil0
high → if_high
rand0(x) → rand0(s0(x))
if_low → low
if_high → high
quot(00) → 00
low → if_low
if_high → add(high)
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
le(00) → true0
quicksort0(add(x)) → app(add(quicksort0(high)))
minus(x) → x
quicksort0(nil0) → nil0
Q is empty.
We have to consider all (P,Q,R)-chains.
(17) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
le(s0(x)) → false0
quot(00) → 00
le(00) → true0
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(MINUS0(x1, x2)) = x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(false0) = 1
POL(high) = 0
POL(if_high) = 0
POL(if_low) = 0
POL(le(x1)) = 2 + x1
POL(low) = 0
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quicksort0(x1)) = 2·x1
POL(quot(x1)) = 1 + 2·x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS0(s0(x), s0(y)) → MINUS0(x, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le(s0(x)) → le(x)
if_low → add(low)
high → nil0
high → if_high
rand0(x) → rand0(s0(x))
if_low → low
if_high → high
low → if_low
if_high → add(high)
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add(x)) → app(add(quicksort0(high)))
minus(x) → x
quicksort0(nil0) → nil0
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
quicksort0(nil0) → nil0
Used ordering: Polynomial interpretation [POLO]:
POL(MINUS0(x1, x2)) = x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(high) = 0
POL(if_high) = 0
POL(if_low) = 0
POL(le(x1)) = x1
POL(low) = 0
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quicksort0(x1)) = 2 + x1
POL(quot(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS0(s0(x), s0(y)) → MINUS0(x, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le(s0(x)) → le(x)
if_low → add(low)
high → nil0
high → if_high
rand0(x) → rand0(s0(x))
if_low → low
if_high → high
low → if_low
if_high → add(high)
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add(x)) → app(add(quicksort0(high)))
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MINUS0(s0(x), s0(y)) → MINUS0(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( quot(x1) ) = max{0, 2x1 - 1} |
POL( minus(x1) ) = x1 + 1 |
POL( rand0(x1) ) = max{0, -2} |
POL( quicksort0(x1) ) = 2x1 |
POL( MINUS0(x1, x2) ) = 2x1 + 2x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s0(x)) → s0(quot(minus(x)))
le(s0(x)) → le(x)
if_low → add(low)
high → nil0
high → if_high
rand0(x) → rand0(s0(x))
if_low → low
if_high → high
low → if_low
if_high → add(high)
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add(x)) → app(add(quicksort0(high)))
minus(x) → x
(22) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le(s0(x)) → le(x)
if_low → add(low)
high → nil0
high → if_high
rand0(x) → rand0(s0(x))
if_low → low
if_high → high
low → if_low
if_high → add(high)
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add(x)) → app(add(quicksort0(high)))
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(23) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(24) YES
(25) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
if_low(true, n, add(m, x)) → add(m, low(n, x))
le(s(x), 0) → false
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
if_high(true, n, add(m, x)) → high(n, x)
le(s(x), s(y)) → LE(x, y)
quot(0, s(y)) → 0
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
low(n, nil) → nil
if_high(false, n, add(m, x)) → add(m, high(n, x))
app(add(n, x), y) → add(n, app(x, y))
app(nil, y) → y
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
minus(x, 0) → x
quicksort(nil) → nil
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(26) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:low_2 = 0, 1
true =
add_2 = 0
app_2 = 0
quicksort_1 =
if_high_3 = 0, 1
rand_1 =
quot_2 = 1
false =
nil =
s_1 =
if_low_3 = 0, 1, 2
LE_2 =
le_2 = 0, 1
0 =
minus_2 = 1
high_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
LE(x1, x2) = LE(x1, x2)
s(x1) = s(x1)
quot(x1, x2) = x1
minus(x1, x2) = x1
le(x1, x2) = le
if_low(x1, x2, x3) = if_low
true = true
add(x1, x2) = x2
low(x1, x2) = low
0 = 0
false = false
high(x1, x2) = x2
nil = nil
if_high(x1, x2, x3) = x3
app(x1, x2) = x2
quicksort(x1) = x1
Recursive path order with status [RPO].
Quasi-Precedence:
[iflow, low] > [le, false] > true
[iflow, low] > nil
0 > [le, false] > true
Status:
LE2: multiset
s1: multiset
le: []
iflow: multiset
true: multiset
low: multiset
0: multiset
false: multiset
nil: multiset
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE0(s0(x), s0(y)) → LE0(x, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low → add(low)
le → false0
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low → low
if_high(add(x)) → high(x)
quot(00) → 00
low → if_low
low → nil0
if_high(add(x)) → add(high(x))
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add(x)) → app(add(quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(28) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
le → false0
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(LE0(x1, x2)) = x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(false0) = 0
POL(high(x1)) = x1
POL(if_high(x1)) = x1
POL(if_low) = 0
POL(le) = 2
POL(low) = 0
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quicksort0(x1)) = 2·x1
POL(quot(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 2
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE0(s0(x), s0(y)) → LE0(x, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low → add(low)
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low → low
if_high(add(x)) → high(x)
quot(00) → 00
low → if_low
low → nil0
if_high(add(x)) → add(high(x))
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add(x)) → app(add(quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
Q is empty.
We have to consider all (P,Q,R)-chains.
(30) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
le → true0
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(LE0(x1, x2)) = x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(high(x1)) = x1
POL(if_high(x1)) = x1
POL(if_low) = 0
POL(le) = 2
POL(low) = 0
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quicksort0(x1)) = 2·x1
POL(quot(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE0(s0(x), s0(y)) → LE0(x, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low → add(low)
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low → low
if_high(add(x)) → high(x)
quot(00) → 00
low → if_low
low → nil0
if_high(add(x)) → add(high(x))
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add(x)) → app(add(quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
Q is empty.
We have to consider all (P,Q,R)-chains.
(32) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
quot(00) → 00
quicksort0(nil0) → nil0
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 1
POL(LE0(x1, x2)) = x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(high(x1)) = x1
POL(if_high(x1)) = x1
POL(if_low) = 2
POL(le) = 0
POL(low) = 2
POL(minus(x1)) = x1
POL(nil0) = 2
POL(quicksort0(x1)) = 2 + x1
POL(quot(x1)) = 2 + 2·x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE0(s0(x), s0(y)) → LE0(x, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low → add(low)
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low → low
if_high(add(x)) → high(x)
low → if_low
low → nil0
if_high(add(x)) → add(high(x))
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add(x)) → app(add(quicksort0(high(x))))
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(34) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
low → nil0
Used ordering: Polynomial interpretation [POLO]:
POL(LE0(x1, x2)) = x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(high(x1)) = x1
POL(if_high(x1)) = x1
POL(if_low) = 2
POL(le) = 0
POL(low) = 2
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quicksort0(x1)) = x1
POL(quot(x1)) = 2 + x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE0(s0(x), s0(y)) → LE0(x, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low → add(low)
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low → low
if_high(add(x)) → high(x)
low → if_low
if_high(add(x)) → add(high(x))
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add(x)) → app(add(quicksort0(high(x))))
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(36) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
LE0(s0(x), s0(y)) → LE0(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LE0(
x1,
x2) =
LE0(
x1,
x2)
s0(
x1) =
s0(
x1)
quot(
x1) =
quot(
x1)
minus(
x1) =
minus(
x1)
le =
le
if_low =
if_low
add(
x1) =
x1
low =
low
high(
x1) =
x1
nil0 =
nil0
if_high(
x1) =
x1
rand0(
x1) =
rand0
app(
x1) =
x1
quicksort0(
x1) =
x1
Recursive path order with status [RPO].
Quasi-Precedence:
quot1 > s01 > LE02
quot1 > s01 > minus1
[iflow, low]
rand0 > s01 > LE02
rand0 > s01 > minus1
Status:
LE02: [2,1]
s01: multiset
quot1: multiset
minus1: multiset
le: multiset
iflow: multiset
low: multiset
nil0: multiset
rand0: []
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low → add(low)
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low → low
if_high(add(x)) → high(x)
low → if_low
if_high(add(x)) → add(high(x))
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add(x)) → app(add(quicksort0(high(x))))
minus(x) → x
(37) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low → add(low)
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low → low
if_high(add(x)) → high(x)
low → if_low
if_high(add(x)) → add(high(x))
app(y) → add(app(y))
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add(x)) → app(add(quicksort0(high(x))))
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(38) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(39) YES
(40) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_high(true, n, add(m, x)) → high(n, x)
low(n, add(m, x)) → IF_LOW(le(m, n), n, add(m, x))
quot(0, s(y)) → 0
if_low(false, n, add(m, x)) → LOW(n, x)
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
low(n, nil) → nil
if_high(false, n, add(m, x)) → add(m, high(n, x))
app(add(n, x), y) → add(n, app(x, y))
app(nil, y) → y
if_low(true, n, add(m, x)) → add(m, LOW(n, x))
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
minus(x, 0) → x
quicksort(nil) → nil
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(41) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:low_2 = 0
true =
add_2 = 0
app_2 =
IF_LOW_3 = 0
quicksort_1 =
if_high_3 = 0, 1
rand_1 =
quot_2 =
false =
nil =
s_1 =
if_low_3 = 0, 1
le_2 = 0, 1
0 =
minus_2 = 1
high_2 = 0
LOW_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
IF_LOW(x1, x2, x3) = IF_LOW(x2, x3)
false = false
add(x1, x2) = add(x2)
LOW(x1, x2) = LOW(x1, x2)
true = true
le(x1, x2) = le
quot(x1, x2) = quot(x1, x2)
s(x1) = s(x1)
minus(x1, x2) = minus(x1)
if_low(x1, x2, x3) = x3
low(x1, x2) = x2
0 = 0
high(x1, x2) = x2
nil = nil
if_high(x1, x2, x3) = x3
app(x1, x2) = app(x1, x2)
quicksort(x1) = quicksort(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[true, le] > add1 > [IFLOW2, LOW2] > [false, 0]
quot2 > s1 > minus1 > [false, 0]
quicksort1 > nil > [false, 0]
quicksort1 > app2 > add1 > [IFLOW2, LOW2] > [false, 0]
Status:
IFLOW2: multiset
false: multiset
add1: multiset
LOW2: multiset
true: multiset
le: []
quot2: [2,1]
s1: multiset
minus1: [1]
0: multiset
nil: multiset
app2: multiset
quicksort1: [1]
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_LOW(n, add(x)) → LOW0(n, x)
LOW0(n, add(x)) → IF_LOW(n, add(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
le → le
if_low(add(x)) → add(low(x))
le → false0
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low(add(x)) → low(x)
if_high(add(x)) → high(x)
quot0(00, s0(y)) → 00
low(add(x)) → if_low(add(x))
low(nil0) → nil0
if_high(add(x)) → add(high(x))
app0(add(x), y) → add(app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add(x)) → app0(quicksort0(low(x)), add(quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(43) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF_LOW(n, add(x)) → LOW0(n, x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF_LOW(
x1,
x2) =
IF_LOW(
x2)
add(
x1) =
add(
x1)
LOW0(
x1,
x2) =
LOW0(
x2)
quot0(
x1,
x2) =
quot0
s0(
x1) =
x1
minus(
x1) =
minus(
x1)
le =
le
if_low(
x1) =
x1
low(
x1) =
x1
false0 =
false0
high(
x1) =
x1
nil0 =
nil0
if_high(
x1) =
x1
rand0(
x1) =
x1
00 =
00
app0(
x1,
x2) =
app0(
x1,
x2)
true0 =
true0
quicksort0(
x1) =
quicksort0(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[quot0, 00] > minus1 > [IFLOW1, LOW01]
le > false0 > [IFLOW1, LOW01]
le > true0 > [IFLOW1, LOW01]
quicksort01 > nil0 > [IFLOW1, LOW01]
quicksort01 > app02 > add1 > [IFLOW1, LOW01]
Status:
IFLOW1: [1]
add1: [1]
LOW01: [1]
quot0: []
minus1: [1]
le: multiset
false0: multiset
nil0: multiset
00: multiset
app02: [2,1]
true0: multiset
quicksort01: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
le → le
if_low(add(x)) → add(low(x))
le → false0
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low(add(x)) → low(x)
if_high(add(x)) → high(x)
quot0(00, s0(y)) → 00
low(add(x)) → if_low(add(x))
low(nil0) → nil0
if_high(add(x)) → add(high(x))
app0(add(x), y) → add(app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add(x)) → app0(quicksort0(low(x)), add(quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LOW0(n, add(x)) → IF_LOW(n, add(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
le → le
if_low(add(x)) → add(low(x))
le → false0
high(nil0) → nil0
high(add(x)) → if_high(add(x))
rand0(x) → rand0(s0(x))
if_low(add(x)) → low(x)
if_high(add(x)) → high(x)
quot0(00, s0(y)) → 00
low(add(x)) → if_low(add(x))
low(nil0) → nil0
if_high(add(x)) → add(high(x))
app0(add(x), y) → add(app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add(x)) → app0(quicksort0(low(x)), add(quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(45) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(46) TRUE
(47) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
if_high(false, n, add(m, x)) → add(m, HIGH(n, x))
le(s(x), s(y)) → le(x, y)
if_low(true, n, add(m, x)) → add(m, low(n, x))
le(s(x), 0) → false
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
quot(0, s(y)) → 0
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
low(n, nil) → nil
app(add(n, x), y) → add(n, app(x, y))
if_high(true, n, add(m, x)) → HIGH(n, x)
app(nil, y) → y
high(n, add(m, x)) → IF_HIGH(le(m, n), n, add(m, x))
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
minus(x, 0) → x
quicksort(nil) → nil
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(48) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:HIGH_2 = 0
low_2 = 0
true =
IF_HIGH_3 = 1
add_2 =
app_2 =
quicksort_1 =
if_high_3 = 0, 1
rand_1 =
quot_2 =
false =
nil =
s_1 =
if_low_3 = 0, 1
le_2 = 1
0 =
minus_2 = 1
high_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
IF_HIGH(x1, x2, x3) = IF_HIGH(x1, x3)
true = true
add(x1, x2) = add(x1, x2)
HIGH(x1, x2) = HIGH(x2)
le(x1, x2) = le(x1)
false = false
quot(x1, x2) = quot(x1, x2)
s(x1) = x1
minus(x1, x2) = x1
if_low(x1, x2, x3) = x3
low(x1, x2) = x2
0 = 0
high(x1, x2) = x2
nil = nil
if_high(x1, x2, x3) = x3
app(x1, x2) = app(x1, x2)
quicksort(x1) = quicksort(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
0 > true > [add2, HIGH1, le1] > IFHIGH2
0 > true > [add2, HIGH1, le1] > false
[nil, quicksort1] > app2 > [add2, HIGH1, le1] > IFHIGH2
[nil, quicksort1] > app2 > [add2, HIGH1, le1] > false
Status:
IFHIGH2: multiset
true: multiset
add2: multiset
HIGH1: multiset
le1: multiset
false: multiset
quot2: [1,2]
0: multiset
nil: multiset
app2: multiset
quicksort1: [1]
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF_HIGH(true0, add0(m, x)) → HIGH(x)
HIGH(add0(m, x)) → IF_HIGH(le(m), add0(m, x))
IF_HIGH(false0, add0(m, x)) → HIGH(x)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
le(s0(x)) → le(x)
if_low(add0(m, x)) → add0(m, low(x))
le(s0(x)) → false0
high(nil0) → nil0
high(add0(m, x)) → if_high(add0(m, x))
rand0(x) → rand0(s0(x))
if_low(add0(m, x)) → low(x)
if_high(add0(m, x)) → high(x)
quot0(00, s0(y)) → 00
low(add0(m, x)) → if_low(add0(m, x))
low(nil0) → nil0
if_high(add0(m, x)) → add0(m, high(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le(00) → true0
quicksort0(add0(n, x)) → app0(quicksort0(low(x)), add0(n, quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(50) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
IF_HIGH(true0, add0(m, x)) → HIGH(x)
HIGH(add0(m, x)) → IF_HIGH(le(m), add0(m, x))
IF_HIGH(false0, add0(m, x)) → HIGH(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF_HIGH(
x1,
x2) =
IF_HIGH(
x1,
x2)
true0 =
true0
add0(
x1,
x2) =
add0(
x2)
HIGH(
x1) =
HIGH(
x1)
le(
x1) =
le
false0 =
false0
quot0(
x1,
x2) =
x2
s0(
x1) =
x1
minus(
x1) =
x1
if_low(
x1) =
x1
low(
x1) =
x1
high(
x1) =
x1
nil0 =
nil0
if_high(
x1) =
x1
rand0(
x1) =
x1
00 =
00
app0(
x1,
x2) =
app0(
x1,
x2)
quicksort0(
x1) =
quicksort0(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
nil0 > [IFHIGH2, 00]
quicksort01 > app02 > [true0, add01, HIGH1, le] > false0 > [IFHIGH2, 00]
Status:
IFHIGH2: [1,2]
true0: multiset
add01: multiset
HIGH1: multiset
le: multiset
false0: multiset
nil0: multiset
00: multiset
app02: multiset
quicksort01: multiset
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
le(s0(x)) → le(x)
if_low(add0(m, x)) → add0(m, low(x))
le(s0(x)) → false0
high(nil0) → nil0
high(add0(m, x)) → if_high(add0(m, x))
rand0(x) → rand0(s0(x))
if_low(add0(m, x)) → low(x)
if_high(add0(m, x)) → high(x)
quot0(00, s0(y)) → 00
low(add0(m, x)) → if_low(add0(m, x))
low(nil0) → nil0
if_high(add0(m, x)) → add0(m, high(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le(00) → true0
quicksort0(add0(n, x)) → app0(quicksort0(low(x)), add0(n, quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
(51) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
le(s0(x)) → le(x)
if_low(add0(m, x)) → add0(m, low(x))
le(s0(x)) → false0
high(nil0) → nil0
high(add0(m, x)) → if_high(add0(m, x))
rand0(x) → rand0(s0(x))
if_low(add0(m, x)) → low(x)
if_high(add0(m, x)) → high(x)
quot0(00, s0(y)) → 00
low(add0(m, x)) → if_low(add0(m, x))
low(nil0) → nil0
if_high(add0(m, x)) → add0(m, high(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le(00) → true0
quicksort0(add0(n, x)) → app0(quicksort0(low(x)), add0(n, quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(52) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(53) YES
(54) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(s(x), s(y)) → le(x, y)
if_low(true, n, add(m, x)) → add(m, low(n, x))
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, QUICKSORT(high(n, x))))
le(s(x), 0) → false
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
if_high(true, n, add(m, x)) → high(n, x)
quot(0, s(y)) → 0
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
quicksort(add(n, x)) → app(QUICKSORT(low(n, x)), add(n, quicksort(high(n, x))))
low(n, nil) → nil
if_high(false, n, add(m, x)) → add(m, high(n, x))
app(add(n, x), y) → add(n, app(x, y))
app(nil, y) → y
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
minus(x, 0) → x
quicksort(nil) → nil
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(55) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:low_2 = 0
true =
add_2 =
app_2 =
quicksort_1 =
QUICKSORT_1 =
if_high_3 = 0, 1
rand_1 =
quot_2 =
false =
nil =
s_1 =
if_low_3 = 0, 1
le_2 = 0, 1
0 =
minus_2 = 1
high_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
QUICKSORT(x1) = QUICKSORT(x1)
add(x1, x2) = add(x1, x2)
high(x1, x2) = x2
low(x1, x2) = x2
quot(x1, x2) = quot(x1, x2)
s(x1) = s(x1)
minus(x1, x2) = minus(x1)
le(x1, x2) = le
if_low(x1, x2, x3) = x3
true = true
0 = 0
false = false
nil = nil
if_high(x1, x2, x3) = x3
app(x1, x2) = app(x1, x2)
quicksort(x1) = quicksort(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
quot2 > s1 > false > [minus1, nil]
le > [QUICKSORT1, add2, true, app2] > [minus1, nil]
le > false > [minus1, nil]
0 > false > [minus1, nil]
quicksort1 > [QUICKSORT1, add2, true, app2] > [minus1, nil]
Status:
QUICKSORT1: [1]
add2: [1,2]
quot2: [1,2]
s1: multiset
minus1: multiset
le: []
true: multiset
0: multiset
false: multiset
nil: multiset
app2: [1,2]
quicksort1: [1]
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUICKSORT0(add0(n, x)) → QUICKSORT0(high(x))
QUICKSORT0(add0(n, x)) → QUICKSORT0(low(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
le → le
if_low(add0(m, x)) → add0(m, low(x))
le → false0
high(nil0) → nil0
high(add0(m, x)) → if_high(add0(m, x))
rand0(x) → rand0(s0(x))
if_low(add0(m, x)) → low(x)
if_high(add0(m, x)) → high(x)
quot0(00, s0(y)) → 00
low(add0(m, x)) → if_low(add0(m, x))
low(nil0) → nil0
if_high(add0(m, x)) → add0(m, high(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add0(n, x)) → app0(quicksort0(low(x)), add0(n, quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(57) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUICKSORT0(add0(n, x)) → QUICKSORT0(high(x))
QUICKSORT0(add0(n, x)) → QUICKSORT0(low(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
QUICKSORT0(
x1) =
QUICKSORT0(
x1)
add0(
x1,
x2) =
add0(
x1,
x2)
high(
x1) =
high(
x1)
low(
x1) =
x1
quot0(
x1,
x2) =
quot0
s0(
x1) =
x1
minus(
x1) =
minus(
x1)
le =
le
if_low(
x1) =
x1
false0 =
false0
nil0 =
nil0
if_high(
x1) =
if_high(
x1)
rand0(
x1) =
x1
00 =
00
app0(
x1,
x2) =
app0(
x1,
x2)
true0 =
true0
quicksort0(
x1) =
quicksort0(
x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[quot0, minus1, 00]
[le, false0] > true0
quicksort01 > app02 > [QUICKSORT01, add02, high1, ifhigh1] > nil0
Status:
QUICKSORT01: [1]
add02: multiset
high1: multiset
quot0: multiset
minus1: multiset
le: multiset
false0: multiset
nil0: multiset
ifhigh1: multiset
00: multiset
app02: multiset
true0: multiset
quicksort01: [1]
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
le → le
if_low(add0(m, x)) → add0(m, low(x))
le → false0
high(nil0) → nil0
high(add0(m, x)) → if_high(add0(m, x))
rand0(x) → rand0(s0(x))
if_low(add0(m, x)) → low(x)
if_high(add0(m, x)) → high(x)
quot0(00, s0(y)) → 00
low(add0(m, x)) → if_low(add0(m, x))
low(nil0) → nil0
if_high(add0(m, x)) → add0(m, high(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add0(n, x)) → app0(quicksort0(low(x)), add0(n, quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
(58) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
le → le
if_low(add0(m, x)) → add0(m, low(x))
le → false0
high(nil0) → nil0
high(add0(m, x)) → if_high(add0(m, x))
rand0(x) → rand0(s0(x))
if_low(add0(m, x)) → low(x)
if_high(add0(m, x)) → high(x)
quot0(00, s0(y)) → 00
low(add0(m, x)) → if_low(add0(m, x))
low(nil0) → nil0
if_high(add0(m, x)) → add0(m, high(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add0(n, x)) → app0(quicksort0(low(x)), add0(n, quicksort0(high(x))))
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(59) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(60) YES
(61) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(s(x), s(y)) → le(x, y)
if_low(true, n, add(m, x)) → add(m, low(n, x))
le(s(x), 0) → false
high(n, nil) → nil
high(n, add(m, x)) → if_high(le(m, n), n, add(m, x))
if_low(false, n, add(m, x)) → low(n, x)
if_high(true, n, add(m, x)) → high(n, x)
quot(0, s(y)) → 0
low(n, add(m, x)) → if_low(le(m, n), n, add(m, x))
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
low(n, nil) → nil
if_high(false, n, add(m, x)) → add(m, high(n, x))
app(add(n, x), y) → add(n, app(x, y))
app(nil, y) → y
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
quicksort(add(n, x)) → app(quicksort(low(n, x)), add(n, quicksort(high(n, x))))
minus(x, 0) → x
quicksort(nil) → nil
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(62) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:low_2 = 0, 1
true =
QUOT_2 = 1
add_2 = 0, 1
app_2 = 0
quicksort_1 =
if_high_3 = 0, 1
rand_1 =
quot_2 = 1
false =
nil =
s_1 =
if_low_3 = 0, 1
le_2 = 0, 1
0 =
minus_2 = 1
high_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
QUOT(x1, x2) = QUOT(x1)
s(x1) = s(x1)
minus(x1, x2) = x1
quot(x1, x2) = quot(x1)
le(x1, x2) = le
if_low(x1, x2, x3) = x3
true = true
add(x1, x2) = add
low(x1, x2) = low
0 = 0
false = false
high(x1, x2) = high
nil = nil
if_high(x1, x2, x3) = x3
app(x1, x2) = app(x2)
quicksort(x1) = quicksort(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
quot1 > [QUOT1, s1] > 0 > [false, nil]
le > [true, add, low, high] > [false, nil]
[app1, quicksort1] > [true, add, low, high] > [false, nil]
Status:
QUOT1: [1]
s1: multiset
quot1: [1]
le: []
true: multiset
add: multiset
low: multiset
0: multiset
false: multiset
high: multiset
nil: multiset
app1: [1]
quicksort1: [1]
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low(add) → add
le → false0
high → nil0
high → if_high(add)
rand0(x) → rand0(s0(x))
if_low(add) → low
if_high(add) → high
quot(00) → 00
low → if_low(add)
low → nil0
if_high(add) → add
app(y) → add
app(y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add) → app(add)
minus(x) → x
quicksort0(nil0) → nil0
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(64) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
le → false0
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(QUOT(x1)) = x1
POL(add) = 0
POL(app(x1)) = 2·x1
POL(false0) = 0
POL(high) = 0
POL(if_high(x1)) = x1
POL(if_low(x1)) = x1
POL(le) = 2
POL(low) = 0
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quicksort0(x1)) = x1
POL(quot(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 2
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low(add) → add
high → nil0
high → if_high(add)
rand0(x) → rand0(s0(x))
if_low(add) → low
if_high(add) → high
quot(00) → 00
low → if_low(add)
low → nil0
if_high(add) → add
app(y) → add
app(y) → y
minus(s0(x)) → minus(x)
le → true0
quicksort0(add) → app(add)
minus(x) → x
quicksort0(nil0) → nil0
Q is empty.
We have to consider all (P,Q,R)-chains.
(66) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
le → true0
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(QUOT(x1)) = x1
POL(add) = 0
POL(app(x1)) = 2·x1
POL(high) = 0
POL(if_high(x1)) = x1
POL(if_low(x1)) = x1
POL(le) = 2
POL(low) = 0
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quicksort0(x1)) = x1
POL(quot(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
if_low(add) → add
high → nil0
high → if_high(add)
rand0(x) → rand0(s0(x))
if_low(add) → low
if_high(add) → high
quot(00) → 00
low → if_low(add)
low → nil0
if_high(add) → add
app(y) → add
app(y) → y
minus(s0(x)) → minus(x)
quicksort0(add) → app(add)
minus(x) → x
quicksort0(nil0) → nil0
Q is empty.
We have to consider all (P,Q,R)-chains.
(68) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
if_low(add) → add
high → nil0
quot(00) → 00
low → nil0
if_high(add) → add
app(y) → y
quicksort0(add) → app(add)
quicksort0(nil0) → nil0
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 2
POL(QUOT(x1)) = x1
POL(add) = 1
POL(app(x1)) = 1 + x1
POL(high) = 2
POL(if_high(x1)) = 2·x1
POL(if_low(x1)) = 2·x1
POL(le) = 0
POL(low) = 2
POL(minus(x1)) = x1
POL(nil0) = 1
POL(quicksort0(x1)) = 2 + 2·x1
POL(quot(x1)) = 2·x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
high → if_high(add)
rand0(x) → rand0(s0(x))
if_low(add) → low
if_high(add) → high
low → if_low(add)
app(y) → add
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(70) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
app(y) → add
Used ordering: Polynomial interpretation [POLO]:
POL(QUOT(x1)) = x1
POL(add) = 0
POL(app(x1)) = 2 + x1
POL(high) = 0
POL(if_high(x1)) = 2·x1
POL(if_low(x1)) = 2·x1
POL(le) = 0
POL(low) = 0
POL(minus(x1)) = x1
POL(quot(x1)) = 2·x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
high → if_high(add)
rand0(x) → rand0(s0(x))
if_low(add) → low
if_high(add) → high
low → if_low(add)
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(72) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUOT(s0(x)) → QUOT(minus(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( quot(x1) ) = max{0, 2x1 - 2} |
POL( minus(x1) ) = x1 + 1 |
POL( if_high(x1) ) = max{0, x1 - 1} |
POL( rand0(x1) ) = max{0, -2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s0(x)) → s0(quot(minus(x)))
le → le
high → if_high(add)
rand0(x) → rand0(s0(x))
if_low(add) → low
if_high(add) → high
low → if_low(add)
minus(s0(x)) → minus(x)
minus(x) → x
(73) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
le → le
high → if_high(add)
rand0(x) → rand0(s0(x))
if_low(add) → low
if_high(add) → high
low → if_low(add)
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(74) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(75) YES