(0) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
The relative TRS consists of the following S rules:
rand(x) → rand(s(x))
rand(x) → x
(1) RelTRStoRelADPProof (EQUIVALENT transformation)
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
(2) Obligation:
Relative ADP Problem with
absolute ADPs:
minus(x, 0) → x
minus(s(x), s(y)) → MINUS(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
quot(s(x), s(y)) → s(quot(MINUS(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, APP(x, y))
reverse(nil) → nil
reverse(add(n, x)) → APP(reverse(x), add(n, nil))
reverse(add(n, x)) → app(REVERSE(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, SHUFFLE(reverse(x)))
shuffle(add(n, x)) → add(n, shuffle(REVERSE(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, CONCAT(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → LESS_LEAVES(concat(u, v), concat(w, z))
less_leaves(cons(u, v), cons(w, z)) → less_leaves(CONCAT(u, v), concat(w, z))
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), CONCAT(w, z))
and relative ADPs:
rand(x) → RAND(s(x))
rand(x) → x
(3) RelADPDepGraphProof (EQUIVALENT transformation)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
7 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 7 subproblems.
(4) Complex Obligation (AND)
(5) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(x, 0) → x
minus(s(x), s(y)) → MINUS(x, y)
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(6) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:MINUS_2 = 1
true =
less_leaves_2 =
add_2 = 0
app_2 = 0
concat_2 = 0
leaf =
shuffle_1 = 0
rand_1 =
quot_2 =
nil =
false =
s_1 =
reverse_1 = 0
0 =
minus_2 = 1
cons_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = MINUS(x1)
s(x1) = s(x1)
quot(x1, x2) = quot(x1, x2)
minus(x1, x2) = minus(x1)
concat(x1, x2) = x2
leaf = leaf
cons(x1, x2) = x2
shuffle(x1) = shuffle
nil = nil
add(x1, x2) = x2
reverse(x1) = reverse
0 = 0
less_leaves(x1, x2) = less_leaves(x1, x2)
false = false
app(x1, x2) = x2
true = true
Recursive path order with status [RPO].
Quasi-Precedence:
quot2 > s1 > MINUS1
quot2 > s1 > minus1
quot2 > 0
[shuffle, nil, reverse]
lessleaves2 > false
lessleaves2 > true
Status:
MINUS1: multiset
s1: [1]
quot2: [1,2]
minus1: multiset
leaf: multiset
shuffle: []
nil: multiset
reverse: []
0: multiset
lessleaves2: [2,1]
false: multiset
true: multiset
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(x)) → MINUS(x)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle → nil0
shuffle → add(shuffle)
quot0(00, s0(y)) → 00
reverse → nil0
less_leaves0(x, leaf0) → false0
app(y) → add(app(y))
less_leaves0(leaf0, cons(z)) → true0
app(y) → y
reverse → app(add(nil0))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons(v), cons(z)) → less_leaves0(concat(v), concat(z))
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(8) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
shuffle → nil0
reverse → nil0
reverse → app(add(nil0))
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(MINUS(x1)) = 2·x1
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(concat(x1)) = x1
POL(cons(x1)) = x1
POL(false0) = 0
POL(leaf0) = 0
POL(less_leaves0(x1, x2)) = x1 + x2
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quot0(x1, x2)) = x1 + x2
POL(rand0(x1)) = 2 + x1
POL(reverse) = 2
POL(s0(x1)) = x1
POL(shuffle) = 2
POL(true0) = 0
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(x)) → MINUS(x)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle → add(shuffle)
quot0(00, s0(y)) → 00
less_leaves0(x, leaf0) → false0
app(y) → add(app(y))
less_leaves0(leaf0, cons(z)) → true0
app(y) → y
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons(v), cons(z)) → less_leaves0(concat(v), concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(10) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
app(y) → y
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(MINUS(x1)) = x1
POL(add(x1)) = x1
POL(app(x1)) = 2 + x1
POL(concat(x1)) = x1
POL(cons(x1)) = x1
POL(false0) = 0
POL(leaf0) = 0
POL(less_leaves0(x1, x2)) = x1 + x2
POL(minus(x1)) = x1
POL(quot0(x1, x2)) = x1 + x2
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(shuffle) = 0
POL(true0) = 0
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(x)) → MINUS(x)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle → add(shuffle)
quot0(00, s0(y)) → 00
less_leaves0(x, leaf0) → false0
app(y) → add(app(y))
less_leaves0(leaf0, cons(z)) → true0
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons(v), cons(z)) → less_leaves0(concat(v), concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
quot0(00, s0(y)) → 00
less_leaves0(x, leaf0) → false0
less_leaves0(leaf0, cons(z)) → true0
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(MINUS(x1)) = 2·x1
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(concat(x1)) = x1
POL(cons(x1)) = x1
POL(false0) = 1
POL(leaf0) = 2
POL(less_leaves0(x1, x2)) = 2·x1 + 2·x2
POL(minus(x1)) = x1
POL(quot0(x1, x2)) = 1 + x1 + x2
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(shuffle) = 0
POL(true0) = 2
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(x)) → MINUS(x)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle → add(shuffle)
app(y) → add(app(y))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons(v), cons(z)) → less_leaves0(concat(v), concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MINUS(s0(x)) → MINUS(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(
x1) =
x1
s0(
x1) =
s0(
x1)
quot0(
x1,
x2) =
quot0(
x1)
minus(
x1) =
minus(
x1)
concat(
x1) =
x1
cons(
x1) =
x1
rand0(
x1) =
rand0
shuffle =
shuffle
add(
x1) =
x1
app(
x1) =
app(
x1)
less_leaves0(
x1,
x2) =
less_leaves0(
x2)
Recursive path order with status [RPO].
Quasi-Precedence:
quot01 > s01 > minus1
rand0 > s01 > minus1
Status:
s01: [1]
quot01: [1]
minus1: multiset
rand0: []
shuffle: multiset
app1: multiset
lessleaves01: [1]
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle → add(shuffle)
app(y) → add(app(y))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons(v), cons(z)) → less_leaves0(concat(v), concat(z))
(15) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle → add(shuffle)
app(y) → add(app(y))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons(v), cons(z)) → less_leaves0(concat(v), concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(16) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(17) YES
(18) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, CONCAT(v, y))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(19) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:true =
CONCAT_2 =
less_leaves_2 = 0
add_2 = 0
app_2 = 0
concat_2 =
leaf =
shuffle_1 = 0
rand_1 =
quot_2 = 1
nil =
false =
s_1 =
reverse_1 = 0
0 =
minus_2 = 1
cons_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
CONCAT(x1, x2) = CONCAT(x1, x2)
cons(x1, x2) = cons(x1, x2)
quot(x1, x2) = quot(x1)
s(x1) = s(x1)
minus(x1, x2) = minus(x1)
concat(x1, x2) = concat(x1, x2)
leaf = leaf
shuffle(x1) = shuffle
nil = nil
add(x1, x2) = x2
reverse(x1) = reverse
0 = 0
less_leaves(x1, x2) = x2
false = false
app(x1, x2) = x2
true = true
Recursive path order with status [RPO].
Quasi-Precedence:
CONCAT2 > false
[cons2, concat2, leaf, true] > false
quot1 > s1 > minus1 > false
quot1 > 0 > false
shuffle > reverse > nil > false
Status:
CONCAT2: multiset
cons2: [1,2]
quot1: multiset
s1: [1]
minus1: [1]
concat2: [1,2]
leaf: multiset
shuffle: []
nil: multiset
reverse: []
0: multiset
false: multiset
true: multiset
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONCAT0(cons0(u, v), y) → CONCAT0(v, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat0(leaf0, y) → y
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
rand0(x) → rand0(s0(x))
shuffle → nil0
shuffle → add(shuffle)
quot(00) → 00
reverse → nil0
less_leaves(leaf0) → false0
app(y) → add(app(y))
less_leaves(cons0(w, z)) → true0
app(y) → y
reverse → app(add(nil0))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons0(w, z)) → less_leaves(concat0(w, z))
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
concat0(leaf0, y) → y
reverse → nil0
less_leaves(leaf0) → false0
reverse → app(add(nil0))
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(CONCAT0(x1, x2)) = x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(concat0(x1, x2)) = 2·x1 + x2
POL(cons0(x1, x2)) = 2·x1 + x2
POL(false0) = 0
POL(leaf0) = 1
POL(less_leaves(x1)) = x1
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quot(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(reverse) = 2
POL(s0(x1)) = x1
POL(shuffle) = 0
POL(true0) = 0
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONCAT0(cons0(u, v), y) → CONCAT0(v, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
rand0(x) → rand0(s0(x))
shuffle → nil0
shuffle → add(shuffle)
quot(00) → 00
app(y) → add(app(y))
less_leaves(cons0(w, z)) → true0
app(y) → y
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons0(w, z)) → less_leaves(concat0(w, z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(23) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
app(y) → y
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(CONCAT0(x1, x2)) = 2·x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = 2 + x1
POL(concat0(x1, x2)) = 2·x1 + x2
POL(cons0(x1, x2)) = 2·x1 + x2
POL(less_leaves(x1)) = 1 + x1
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quot(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(shuffle) = 0
POL(true0) = 1
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONCAT0(cons0(u, v), y) → CONCAT0(v, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
rand0(x) → rand0(s0(x))
shuffle → nil0
shuffle → add(shuffle)
quot(00) → 00
app(y) → add(app(y))
less_leaves(cons0(w, z)) → true0
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons0(w, z)) → less_leaves(concat0(w, z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(25) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
shuffle → nil0
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(CONCAT0(x1, x2)) = x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(concat0(x1, x2)) = 2·x1 + x2
POL(cons0(x1, x2)) = 2·x1 + x2
POL(less_leaves(x1)) = 1 + x1
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quot(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(shuffle) = 1
POL(true0) = 1
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONCAT0(cons0(u, v), y) → CONCAT0(v, y)
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
rand0(x) → rand0(s0(x))
shuffle → add(shuffle)
quot(00) → 00
app(y) → add(app(y))
less_leaves(cons0(w, z)) → true0
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons0(w, z)) → less_leaves(concat0(w, z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(27) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
CONCAT0(cons0(u, v), y) → CONCAT0(v, y)
Strictly oriented rules of the TRS R:
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
quot(00) → 00
less_leaves(cons0(w, z)) → true0
less_leaves(cons0(w, z)) → less_leaves(concat0(w, z))
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 1
POL(CONCAT0(x1, x2)) = 2·x1 + x2
POL(add(x1)) = x1
POL(app(x1)) = x1
POL(concat0(x1, x2)) = 1 + 2·x1 + x2
POL(cons0(x1, x2)) = 2 + 2·x1 + x2
POL(less_leaves(x1)) = 2 + x1
POL(minus(x1)) = x1
POL(quot(x1)) = 2·x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(shuffle) = 0
POL(true0) = 2
(28) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
rand0(x) → rand0(s0(x))
shuffle → add(shuffle)
app(y) → add(app(y))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(29) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(30) YES
(31) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
less_leaves(cons(u, v), cons(w, z)) → LESS_LEAVES(concat(u, v), concat(w, z))
concat(cons(u, v), y) → cons(u, concat(v, y))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(32) RelADPDerelatifyingProof (EQUIVALENT transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LESS_LEAVES(cons(u, v), cons(w, z)) → LESS_LEAVES(concat(u, v), concat(w, z))
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(34) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
LESS_LEAVES(cons(u, v), cons(w, z)) → LESS_LEAVES(concat(u, v), concat(w, z))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( quot(x1, x2) ) = x1 + x2 + 1 |
POL( minus(x1, x2) ) = x1 |
POL( concat(x1, x2) ) = 2x1 + x2 + 1 |
POL( cons(x1, x2) ) = 2x1 + x2 + 2 |
POL( reverse(x1) ) = 2x1 + 2 |
POL( less_leaves(x1, x2) ) = 2x1 + x2 + 1 |
POL( app(x1, x2) ) = 2x2 + 2 |
POL( LESS_LEAVES(x1, x2) ) = 2x1 + 2x2 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
(35) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(36) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(37) YES
(38) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(add(n, x), y) → add(n, APP(x, y))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(39) RelADPDerelatifyingProof (EQUIVALENT transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP(add(n, x), y) → APP(x, y)
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(41) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
APP(add(n, x), y) → APP(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( quot(x1, x2) ) = x2 + 2 |
POL( minus(x1, x2) ) = x1 + x2 |
POL( concat(x1, x2) ) = x1 + x2 + 1 |
POL( cons(x1, x2) ) = 2x1 + x2 + 2 |
POL( add(x1, x2) ) = x2 + 1 |
POL( less_leaves(x1, x2) ) = x1 + 2x2 + 1 |
POL( app(x1, x2) ) = x1 + x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
(42) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(43) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(44) YES
(45) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
reverse(add(n, x)) → app(REVERSE(x), add(n, nil))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(46) RelADPDerelatifyingProof (EQUIVALENT transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE(add(n, x)) → REVERSE(x)
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(48) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
REVERSE(add(n, x)) → REVERSE(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( quot(x1, x2) ) = x2 + 2 |
POL( minus(x1, x2) ) = x1 + x2 |
POL( concat(x1, x2) ) = x1 + x2 + 1 |
POL( cons(x1, x2) ) = 2x1 + x2 + 2 |
POL( add(x1, x2) ) = x2 + 1 |
POL( less_leaves(x1, x2) ) = x1 + 2x2 + 1 |
POL( app(x1, x2) ) = x1 + x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
(49) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(50) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(51) YES
(52) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
shuffle(add(n, x)) → add(n, SHUFFLE(reverse(x)))
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(53) RelADPDerelatifyingProof (EQUIVALENT transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SHUFFLE(add(n, x)) → SHUFFLE(reverse(x))
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(55) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
SHUFFLE(add(n, x)) → SHUFFLE(reverse(x))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( minus(x1, x2) ) = 2x1 + 2x2 |
POL( concat(x1, x2) ) = x1 + x2 + 1 |
POL( cons(x1, x2) ) = x1 + x2 + 2 |
POL( shuffle(x1) ) = x1 + 1 |
POL( add(x1, x2) ) = x2 + 1 |
POL( less_leaves(x1, x2) ) = 2x1 + x2 + 1 |
POL( app(x1, x2) ) = x1 + x2 |
POL( SHUFFLE(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
(56) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(57) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(58) YES
(59) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
and relative ADPs:
rand(x) → rand(s(x))
rand(x) → x
(60) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:true =
QUOT_2 =
less_leaves_2 = 0
add_2 = 0, 1
app_2 = 0
concat_2 = 0
leaf =
shuffle_1 =
rand_1 =
quot_2 = 1
nil =
false =
s_1 =
reverse_1 = 0
0 =
minus_2 = 1
cons_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
QUOT(x1, x2) = QUOT(x1, x2)
s(x1) = s(x1)
minus(x1, x2) = x1
quot(x1, x2) = quot(x1)
concat(x1, x2) = x2
leaf = leaf
cons(x1, x2) = x2
shuffle(x1) = shuffle(x1)
nil = nil
add(x1, x2) = add
reverse(x1) = reverse
0 = 0
less_leaves(x1, x2) = x2
false = false
app(x1, x2) = x2
true = true
Recursive path order with status [RPO].
Quasi-Precedence:
QUOT2 > s1 > [nil, add, true]
quot1 > s1 > [nil, add, true]
[leaf, false] > [nil, add, true]
shuffle1 > [nil, add, true]
reverse > [nil, add, true]
0 > [nil, add, true]
Status:
QUOT2: [2,1]
s1: multiset
quot1: multiset
leaf: multiset
shuffle1: [1]
nil: multiset
add: multiset
reverse: []
0: multiset
false: multiset
true: multiset
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add) → add
quot(00) → 00
reverse → nil0
less_leaves(leaf0) → false0
app(y) → add
less_leaves(cons(z)) → true0
app(y) → y
reverse → app(add)
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons(z)) → less_leaves(concat(z))
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
(62) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
reverse → nil0
less_leaves(leaf0) → false0
reverse → app(add)
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(QUOT0(x1, x2)) = x1 + x2
POL(add) = 0
POL(app(x1)) = 2·x1
POL(concat(x1)) = x1
POL(cons(x1)) = x1
POL(false0) = 0
POL(leaf0) = 1
POL(less_leaves(x1)) = x1
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quot(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(reverse) = 2
POL(s0(x1)) = x1
POL(shuffle0(x1)) = x1
POL(true0) = 0
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add) → add
quot(00) → 00
app(y) → add
less_leaves(cons(z)) → true0
app(y) → y
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons(z)) → less_leaves(concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(64) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
app(y) → add
app(y) → y
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(QUOT0(x1, x2)) = x1 + x2
POL(add) = 0
POL(app(x1)) = 2 + x1
POL(concat(x1)) = x1
POL(cons(x1)) = x1
POL(less_leaves(x1)) = 1 + x1
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quot(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(shuffle0(x1)) = 2·x1
POL(true0) = 1
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add) → add
quot(00) → 00
less_leaves(cons(z)) → true0
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons(z)) → less_leaves(concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(66) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
less_leaves(cons(z)) → true0
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0
POL(QUOT0(x1, x2)) = x1 + x2
POL(add) = 0
POL(concat(x1)) = x1
POL(cons(x1)) = x1
POL(less_leaves(x1)) = 2 + x1
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quot(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(shuffle0(x1)) = 2·x1
POL(true0) = 1
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add) → add
quot(00) → 00
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons(z)) → less_leaves(concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(68) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
shuffle0(add) → add
quot(00) → 00
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 1
POL(QUOT0(x1, x2)) = x1 + x2
POL(add) = 1
POL(concat(x1)) = x1
POL(cons(x1)) = x1
POL(less_leaves(x1)) = x1
POL(minus(x1)) = x1
POL(nil0) = 0
POL(quot(x1)) = 2·x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(shuffle0(x1)) = 2·x1
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons(z)) → less_leaves(concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(70) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
shuffle0(nil0) → nil0
Used ordering: Polynomial interpretation [POLO]:
POL(QUOT0(x1, x2)) = x1 + x2
POL(concat(x1)) = x1
POL(cons(x1)) = x1
POL(less_leaves(x1)) = 2·x1
POL(minus(x1)) = x1
POL(nil0) = 2
POL(quot(x1)) = 2·x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(shuffle0(x1)) = 2·x1
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons(z)) → less_leaves(concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(72) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( quot(x1) ) = 2x1 + 1 |
POL( rand0(x1) ) = max{0, -2} |
POL( less_leaves(x1) ) = x1 + 2 |
POL( QUOT0(x1, x2) ) = 2x1 + 2x2 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s0(x)) → s0(quot(minus(x)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons(z)) → less_leaves(concat(z))
(73) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s0(x)) → s0(quot(minus(x)))
concat(y) → y
concat(y) → cons(concat(y))
rand0(x) → rand0(s0(x))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves(cons(z)) → less_leaves(concat(z))
Q is empty.
We have to consider all (P,Q,R)-chains.
(74) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(75) YES