YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 46 ms)
↳7 QDP
↳8 MRRProof (⇔, 0 ms)
↳9 QDP
↳10 QDPOrderProof (⇔, 0 ms)
↳11 QDP
↳12 PisEmptyProof (⇔, 0 ms)
↳13 YES
↳14 RelADPP
↳15 RelADPCleverAfsProof (⇒, 42 ms)
↳16 QDP
↳17 MRRProof (⇔, 0 ms)
↳18 QDP
↳19 MRRProof (⇔, 9 ms)
↳20 QDP
↳21 QDPOrderProof (⇔, 0 ms)
↳22 QDP
↳23 PisEmptyProof (⇔, 0 ms)
↳24 YES
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
rand(x) → rand(s(x))
rand(x) → x
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → PRED(minus(x, y))
minus(x, s(y)) → pred(MINUS(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
quot(s(x), s(y)) → s(quot(MINUS(x, y), s(y)))
rand(x) → RAND(s(x))
rand(x) → x
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
2 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 2 subproblems.
minus(x, s(y)) → pred(MINUS(x, y))
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(x, s(y)) → pred(minus(x, y))
minus(x, 0) → x
pred(s(x)) → x
quot(0, s(y)) → 0
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
MINUS_2 = 0
pred_1 =
0 =
minus_2 = 1
rand_1 =
quot_2 = 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = MINUS(x2)
s(x1) = s(x1)
quot(x1, x2) = quot(x1)
minus(x1, x2) = minus(x1)
pred(x1) = x1
0 = 0
Recursive path order with status [RPO].
Quasi-Precedence:
quot1 > s1 > MINUS1 > minus1
quot1 > s1 > 0 > minus1
MINUS1: multiset
s1: multiset
quot1: [1]
minus1: [1]
0: multiset
MINUS(s0(y)) → MINUS(y)
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
minus(x) → x
rand0(x) → rand0(s0(x))
rand0(x) → x
pred0(s0(x)) → x
quot(00) → 00
rand0(x) → x
quot(00) → 00
POL(00) = 0
POL(MINUS(x1)) = 2·x1
POL(minus(x1)) = x1
POL(pred0(x1)) = x1
POL(quot(x1)) = 1 + x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
MINUS(s0(y)) → MINUS(y)
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s0(y)) → MINUS(y)
quot1 > [s01, rand0] > MINUS1
MINUS1: multiset
s01: multiset
quot1: multiset
rand0: []
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(x, s(y)) → pred(minus(x, y))
minus(x, 0) → x
pred(s(x)) → x
quot(0, s(y)) → 0
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
QUOT_2 =
pred_1 =
0 =
minus_2 = 1
rand_1 =
quot_2 = 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
QUOT(x1, x2) = QUOT(x1, x2)
s(x1) = s(x1)
minus(x1, x2) = x1
quot(x1, x2) = x1
pred(x1) = x1
0 = 0
Recursive path order with status [RPO].
Quasi-Precedence:
[s1, 0] > QUOT2
QUOT2: [2,1]
s1: [1]
0: multiset
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
minus(x) → x
rand0(x) → rand0(s0(x))
rand0(x) → x
pred0(s0(x)) → x
quot(00) → 00
rand0(x) → x
POL(00) = 0
POL(QUOT0(x1, x2)) = x1 + x2
POL(minus(x1)) = x1
POL(pred0(x1)) = x1
POL(quot(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(00) → 00
quot(00) → 00
POL(00) = 2
POL(QUOT0(x1, x2)) = x1 + x2
POL(minus(x1)) = x1
POL(pred0(x1)) = x1
POL(quot(x1)) = 2·x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
[s01, rand0]
s01: multiset
rand0: []
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x