YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 RelADPP
↳5 RelADPCleverAfsProof (⇒, 58 ms)
↳6 QDP
↳7 MRRProof (⇔, 0 ms)
↳8 QDP
↳9 QDPOrderProof (⇔, 0 ms)
↳10 QDP
↳11 PisEmptyProof (⇔, 0 ms)
↳12 YES
f(x) → s(x)
f(s(s(x))) → s(f(f(x)))
rand(x) → rand(s(x))
rand(x) → x
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
f(x) → s(x)
f(s(s(x))) → s(F(f(x)))
f(s(s(x))) → s(f(F(x)))
rand(x) → RAND(s(x))
rand(x) → x
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.
f(s(s(x))) → s(f(F(x)))
f(x) → s(x)
f(s(s(x))) → s(F(f(x)))
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
f_1 =
F_1 =
rand_1 =
Found this filtering by looking at the following order that orders at least one DP strictly:Recursive path order with status [RPO].
Quasi-Precedence:
F1 > [s1, f1]
F1: [1]
s1: multiset
f1: multiset
F0(s0(s0(x))) → F0(x)
F0(s0(s0(x))) → F0(f0(x))
f0(x) → s0(x)
f0(s0(s0(x))) → s0(f0(f0(x)))
rand0(x) → rand0(s0(x))
rand0(x) → x
rand0(x) → x
POL(F0(x1)) = 2·x1
POL(f0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
F0(s0(s0(x))) → F0(x)
F0(s0(s0(x))) → F0(f0(x))
f0(x) → s0(x)
f0(s0(s0(x))) → s0(f0(f0(x)))
rand0(x) → rand0(s0(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F0(s0(s0(x))) → F0(x)
F0(s0(s0(x))) → F0(f0(x))
rand0 > [s01, f01]
s01: multiset
f01: multiset
rand0: multiset
f0(x) → s0(x)
f0(s0(s0(x))) → s0(f0(f0(x)))
rand0(x) → rand0(s0(x))
f0(x) → s0(x)
f0(s0(s0(x))) → s0(f0(f0(x)))
rand0(x) → rand0(s0(x))