YES
0 RelTRS
↳1 RelTRSRRRProof (⇔, 46 ms)
↳2 RelTRS
↳3 RelTRSRRRProof (⇔, 9 ms)
↳4 RelTRS
↳5 RelTRSRRRProof (⇔, 0 ms)
↳6 RelTRS
↳7 RIsEmptyProof (⇔, 0 ms)
↳8 YES
topB(i, N1, y) → topA(1, T1, y)
topA(i, x, N2) → topB(0, x, T2)
topB(i, S1, y) → topA(i, N1, y)
topA(i, x, S2) → topB(i, x, N2)
topA(i, N1, T2) → topB(i, N1, S2)
topA(1, T1, T2) → topB(1, T1, S2)
topB(i, N1, T2) → topB(i, N1, S2)
topA(i, S1, y) → topA(i, N1, y)
topB(1, T1, T2) → topB(1, T1, S2)
topB(i, x, S2) → topB(i, x, N2)
topB(i, x, N2) → topB(0, x, T2)
topA(i, N1, y) → topA(1, T1, y)
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
POL(0) = 0
POL(1) = 0
POL(N1) = 1
POL(N2) = 1
POL(S1) = 1
POL(S2) = 1
POL(T1) = 0
POL(T2) = 1
POL(topA(x1, x2, x3)) = x1 + x2 + x3
POL(topB(x1, x2, x3)) = x1 + x2 + x3
Rules from S:
topB(i, N1, y) → topA(1, T1, y)
topA(i, N1, y) → topA(1, T1, y)
topA(i, x, N2) → topB(0, x, T2)
topB(i, S1, y) → topA(i, N1, y)
topA(i, x, S2) → topB(i, x, N2)
topA(i, N1, T2) → topB(i, N1, S2)
topA(1, T1, T2) → topB(1, T1, S2)
topB(i, N1, T2) → topB(i, N1, S2)
topA(i, S1, y) → topA(i, N1, y)
topB(1, T1, T2) → topB(1, T1, S2)
topB(i, x, S2) → topB(i, x, N2)
topB(i, x, N2) → topB(0, x, T2)
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
POL(0) = 0
POL(1) = 0
POL(N1) = 0
POL(N2) = 0
POL(S1) = 1
POL(S2) = 0
POL(T1) = 0
POL(T2) = 0
POL(topA(x1, x2, x3)) = x1 + x2 + x3
POL(topB(x1, x2, x3)) = x1 + x2 + x3
Rules from S:
topB(i, S1, y) → topA(i, N1, y)
topA(i, S1, y) → topA(i, N1, y)
topA(i, x, N2) → topB(0, x, T2)
topA(i, x, S2) → topB(i, x, N2)
topA(i, N1, T2) → topB(i, N1, S2)
topA(1, T1, T2) → topB(1, T1, S2)
topB(i, N1, T2) → topB(i, N1, S2)
topB(1, T1, T2) → topB(1, T1, S2)
topB(i, x, S2) → topB(i, x, N2)
topB(i, x, N2) → topB(0, x, T2)
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
POL(0) = 0
POL(1) = 0
POL(N1) = 0
POL(N2) = 0
POL(S2) = 0
POL(T1) = 0
POL(T2) = 0
POL(topA(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(topB(x1, x2, x3)) = x1 + x2 + x3
Rules from S:
topA(i, x, N2) → topB(0, x, T2)
topA(i, x, S2) → topB(i, x, N2)
topA(i, N1, T2) → topB(i, N1, S2)
topA(1, T1, T2) → topB(1, T1, S2)
topB(i, N1, T2) → topB(i, N1, S2)
topB(1, T1, T2) → topB(1, T1, S2)
topB(i, x, S2) → topB(i, x, N2)
topB(i, x, N2) → topB(0, x, T2)