(0) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
f(a, g(y), z) → f(b, g(y), g(y))
f(b, g(y), z) → f(a, y, z)
a → b
The relative TRS consists of the following S rules:
f(x, y, z) → f(x, y, g(z))
(1) FlatCCProof (EQUIVALENT transformation)
We used flat context closure [ROOTLAB]
(2) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
f(a, g(y), z) → f(b, g(y), g(y))
f(b, g(y), z) → f(a, y, z)
f(a, z1, z2) → f(b, z1, z2)
f(z0, a, z2) → f(z0, b, z2)
f(z0, z1, a) → f(z0, z1, b)
g(a) → g(b)
The relative TRS consists of the following S rules:
f(x, y, z) → f(x, y, g(z))
(3) RootLabelingProof (EQUIVALENT transformation)
We used plain root labeling [ROOTLAB] with the following heuristic:
LabelAll: All function symbols get labeled
(4) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
f_{a,g_1,f_3}(a, g_{f_3}(y), z) → f_{b,g_1,g_1}(b, g_{f_3}(y), g_{f_3}(y))
f_{a,g_1,a}(a, g_{f_3}(y), z) → f_{b,g_1,g_1}(b, g_{f_3}(y), g_{f_3}(y))
f_{a,g_1,g_1}(a, g_{f_3}(y), z) → f_{b,g_1,g_1}(b, g_{f_3}(y), g_{f_3}(y))
f_{a,g_1,b}(a, g_{f_3}(y), z) → f_{b,g_1,g_1}(b, g_{f_3}(y), g_{f_3}(y))
f_{a,g_1,f_3}(a, g_{a}(y), z) → f_{b,g_1,g_1}(b, g_{a}(y), g_{a}(y))
f_{a,g_1,a}(a, g_{a}(y), z) → f_{b,g_1,g_1}(b, g_{a}(y), g_{a}(y))
f_{a,g_1,g_1}(a, g_{a}(y), z) → f_{b,g_1,g_1}(b, g_{a}(y), g_{a}(y))
f_{a,g_1,b}(a, g_{a}(y), z) → f_{b,g_1,g_1}(b, g_{a}(y), g_{a}(y))
f_{a,g_1,f_3}(a, g_{g_1}(y), z) → f_{b,g_1,g_1}(b, g_{g_1}(y), g_{g_1}(y))
f_{a,g_1,a}(a, g_{g_1}(y), z) → f_{b,g_1,g_1}(b, g_{g_1}(y), g_{g_1}(y))
f_{a,g_1,g_1}(a, g_{g_1}(y), z) → f_{b,g_1,g_1}(b, g_{g_1}(y), g_{g_1}(y))
f_{a,g_1,b}(a, g_{g_1}(y), z) → f_{b,g_1,g_1}(b, g_{g_1}(y), g_{g_1}(y))
f_{a,g_1,f_3}(a, g_{b}(y), z) → f_{b,g_1,g_1}(b, g_{b}(y), g_{b}(y))
f_{a,g_1,a}(a, g_{b}(y), z) → f_{b,g_1,g_1}(b, g_{b}(y), g_{b}(y))
f_{a,g_1,g_1}(a, g_{b}(y), z) → f_{b,g_1,g_1}(b, g_{b}(y), g_{b}(y))
f_{a,g_1,b}(a, g_{b}(y), z) → f_{b,g_1,g_1}(b, g_{b}(y), g_{b}(y))
f_{b,g_1,f_3}(b, g_{f_3}(y), z) → f_{a,f_3,f_3}(a, y, z)
f_{b,g_1,a}(b, g_{f_3}(y), z) → f_{a,f_3,a}(a, y, z)
f_{b,g_1,g_1}(b, g_{f_3}(y), z) → f_{a,f_3,g_1}(a, y, z)
f_{b,g_1,b}(b, g_{f_3}(y), z) → f_{a,f_3,b}(a, y, z)
f_{b,g_1,f_3}(b, g_{a}(y), z) → f_{a,a,f_3}(a, y, z)
f_{b,g_1,a}(b, g_{a}(y), z) → f_{a,a,a}(a, y, z)
f_{b,g_1,g_1}(b, g_{a}(y), z) → f_{a,a,g_1}(a, y, z)
f_{b,g_1,b}(b, g_{a}(y), z) → f_{a,a,b}(a, y, z)
f_{b,g_1,f_3}(b, g_{g_1}(y), z) → f_{a,g_1,f_3}(a, y, z)
f_{b,g_1,a}(b, g_{g_1}(y), z) → f_{a,g_1,a}(a, y, z)
f_{b,g_1,g_1}(b, g_{g_1}(y), z) → f_{a,g_1,g_1}(a, y, z)
f_{b,g_1,b}(b, g_{g_1}(y), z) → f_{a,g_1,b}(a, y, z)
f_{b,g_1,f_3}(b, g_{b}(y), z) → f_{a,b,f_3}(a, y, z)
f_{b,g_1,a}(b, g_{b}(y), z) → f_{a,b,a}(a, y, z)
f_{b,g_1,g_1}(b, g_{b}(y), z) → f_{a,b,g_1}(a, y, z)
f_{b,g_1,b}(b, g_{b}(y), z) → f_{a,b,b}(a, y, z)
f_{a,f_3,f_3}(a, z1, z2) → f_{b,f_3,f_3}(b, z1, z2)
f_{a,f_3,a}(a, z1, z2) → f_{b,f_3,a}(b, z1, z2)
f_{a,f_3,g_1}(a, z1, z2) → f_{b,f_3,g_1}(b, z1, z2)
f_{a,f_3,b}(a, z1, z2) → f_{b,f_3,b}(b, z1, z2)
f_{a,a,f_3}(a, z1, z2) → f_{b,a,f_3}(b, z1, z2)
f_{a,a,a}(a, z1, z2) → f_{b,a,a}(b, z1, z2)
f_{a,a,g_1}(a, z1, z2) → f_{b,a,g_1}(b, z1, z2)
f_{a,a,b}(a, z1, z2) → f_{b,a,b}(b, z1, z2)
f_{a,g_1,f_3}(a, z1, z2) → f_{b,g_1,f_3}(b, z1, z2)
f_{a,g_1,a}(a, z1, z2) → f_{b,g_1,a}(b, z1, z2)
f_{a,g_1,g_1}(a, z1, z2) → f_{b,g_1,g_1}(b, z1, z2)
f_{a,g_1,b}(a, z1, z2) → f_{b,g_1,b}(b, z1, z2)
f_{a,b,f_3}(a, z1, z2) → f_{b,b,f_3}(b, z1, z2)
f_{a,b,a}(a, z1, z2) → f_{b,b,a}(b, z1, z2)
f_{a,b,g_1}(a, z1, z2) → f_{b,b,g_1}(b, z1, z2)
f_{a,b,b}(a, z1, z2) → f_{b,b,b}(b, z1, z2)
f_{f_3,a,f_3}(z0, a, z2) → f_{f_3,b,f_3}(z0, b, z2)
f_{f_3,a,a}(z0, a, z2) → f_{f_3,b,a}(z0, b, z2)
f_{f_3,a,g_1}(z0, a, z2) → f_{f_3,b,g_1}(z0, b, z2)
f_{f_3,a,b}(z0, a, z2) → f_{f_3,b,b}(z0, b, z2)
f_{a,a,f_3}(z0, a, z2) → f_{a,b,f_3}(z0, b, z2)
f_{a,a,a}(z0, a, z2) → f_{a,b,a}(z0, b, z2)
f_{a,a,g_1}(z0, a, z2) → f_{a,b,g_1}(z0, b, z2)
f_{a,a,b}(z0, a, z2) → f_{a,b,b}(z0, b, z2)
f_{g_1,a,f_3}(z0, a, z2) → f_{g_1,b,f_3}(z0, b, z2)
f_{g_1,a,a}(z0, a, z2) → f_{g_1,b,a}(z0, b, z2)
f_{g_1,a,g_1}(z0, a, z2) → f_{g_1,b,g_1}(z0, b, z2)
f_{g_1,a,b}(z0, a, z2) → f_{g_1,b,b}(z0, b, z2)
f_{b,a,f_3}(z0, a, z2) → f_{b,b,f_3}(z0, b, z2)
f_{b,a,a}(z0, a, z2) → f_{b,b,a}(z0, b, z2)
f_{b,a,g_1}(z0, a, z2) → f_{b,b,g_1}(z0, b, z2)
f_{b,a,b}(z0, a, z2) → f_{b,b,b}(z0, b, z2)
f_{f_3,f_3,a}(z0, z1, a) → f_{f_3,f_3,b}(z0, z1, b)
f_{f_3,a,a}(z0, z1, a) → f_{f_3,a,b}(z0, z1, b)
f_{f_3,g_1,a}(z0, z1, a) → f_{f_3,g_1,b}(z0, z1, b)
f_{f_3,b,a}(z0, z1, a) → f_{f_3,b,b}(z0, z1, b)
f_{a,f_3,a}(z0, z1, a) → f_{a,f_3,b}(z0, z1, b)
f_{a,a,a}(z0, z1, a) → f_{a,a,b}(z0, z1, b)
f_{a,g_1,a}(z0, z1, a) → f_{a,g_1,b}(z0, z1, b)
f_{a,b,a}(z0, z1, a) → f_{a,b,b}(z0, z1, b)
f_{g_1,f_3,a}(z0, z1, a) → f_{g_1,f_3,b}(z0, z1, b)
f_{g_1,a,a}(z0, z1, a) → f_{g_1,a,b}(z0, z1, b)
f_{g_1,g_1,a}(z0, z1, a) → f_{g_1,g_1,b}(z0, z1, b)
f_{g_1,b,a}(z0, z1, a) → f_{g_1,b,b}(z0, z1, b)
f_{b,f_3,a}(z0, z1, a) → f_{b,f_3,b}(z0, z1, b)
f_{b,a,a}(z0, z1, a) → f_{b,a,b}(z0, z1, b)
f_{b,g_1,a}(z0, z1, a) → f_{b,g_1,b}(z0, z1, b)
f_{b,b,a}(z0, z1, a) → f_{b,b,b}(z0, z1, b)
g_{a}(a) → g_{b}(b)
The relative TRS consists of the following S rules:
f_{f_3,f_3,f_3}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{f_3}(z))
f_{f_3,f_3,a}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{a}(z))
f_{f_3,f_3,g_1}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{g_1}(z))
f_{f_3,f_3,b}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{b}(z))
f_{f_3,a,f_3}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{f_3}(z))
f_{f_3,a,a}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{a}(z))
f_{f_3,a,g_1}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{g_1}(z))
f_{f_3,a,b}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{b}(z))
f_{f_3,g_1,f_3}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{f_3}(z))
f_{f_3,g_1,a}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{a}(z))
f_{f_3,g_1,g_1}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{g_1}(z))
f_{f_3,g_1,b}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{b}(z))
f_{f_3,b,f_3}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{f_3}(z))
f_{f_3,b,a}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{a}(z))
f_{f_3,b,g_1}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{g_1}(z))
f_{f_3,b,b}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{b}(z))
f_{a,f_3,f_3}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{f_3}(z))
f_{a,f_3,a}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{a}(z))
f_{a,f_3,g_1}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{g_1}(z))
f_{a,f_3,b}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{b}(z))
f_{a,a,f_3}(x, y, z) → f_{a,a,g_1}(x, y, g_{f_3}(z))
f_{a,a,a}(x, y, z) → f_{a,a,g_1}(x, y, g_{a}(z))
f_{a,a,g_1}(x, y, z) → f_{a,a,g_1}(x, y, g_{g_1}(z))
f_{a,a,b}(x, y, z) → f_{a,a,g_1}(x, y, g_{b}(z))
f_{a,g_1,f_3}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{f_3}(z))
f_{a,g_1,a}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{a}(z))
f_{a,g_1,g_1}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{g_1}(z))
f_{a,g_1,b}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{b}(z))
f_{a,b,f_3}(x, y, z) → f_{a,b,g_1}(x, y, g_{f_3}(z))
f_{a,b,a}(x, y, z) → f_{a,b,g_1}(x, y, g_{a}(z))
f_{a,b,g_1}(x, y, z) → f_{a,b,g_1}(x, y, g_{g_1}(z))
f_{a,b,b}(x, y, z) → f_{a,b,g_1}(x, y, g_{b}(z))
f_{g_1,f_3,f_3}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{f_3}(z))
f_{g_1,f_3,a}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{a}(z))
f_{g_1,f_3,g_1}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{g_1}(z))
f_{g_1,f_3,b}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{b}(z))
f_{g_1,a,f_3}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{f_3}(z))
f_{g_1,a,a}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{a}(z))
f_{g_1,a,g_1}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{g_1}(z))
f_{g_1,a,b}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{b}(z))
f_{g_1,g_1,f_3}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{f_3}(z))
f_{g_1,g_1,a}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{a}(z))
f_{g_1,g_1,g_1}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{g_1}(z))
f_{g_1,g_1,b}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{b}(z))
f_{g_1,b,f_3}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{f_3}(z))
f_{g_1,b,a}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{a}(z))
f_{g_1,b,g_1}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{g_1}(z))
f_{g_1,b,b}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{b}(z))
f_{b,f_3,f_3}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{f_3}(z))
f_{b,f_3,a}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{a}(z))
f_{b,f_3,g_1}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{g_1}(z))
f_{b,f_3,b}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{b}(z))
f_{b,a,f_3}(x, y, z) → f_{b,a,g_1}(x, y, g_{f_3}(z))
f_{b,a,a}(x, y, z) → f_{b,a,g_1}(x, y, g_{a}(z))
f_{b,a,g_1}(x, y, z) → f_{b,a,g_1}(x, y, g_{g_1}(z))
f_{b,a,b}(x, y, z) → f_{b,a,g_1}(x, y, g_{b}(z))
f_{b,g_1,f_3}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{f_3}(z))
f_{b,g_1,a}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{a}(z))
f_{b,g_1,g_1}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,b}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{b}(z))
f_{b,b,f_3}(x, y, z) → f_{b,b,g_1}(x, y, g_{f_3}(z))
f_{b,b,a}(x, y, z) → f_{b,b,g_1}(x, y, g_{a}(z))
f_{b,b,g_1}(x, y, z) → f_{b,b,g_1}(x, y, g_{g_1}(z))
f_{b,b,b}(x, y, z) → f_{b,b,g_1}(x, y, g_{b}(z))
(5) RelTRSRRRProof (EQUIVALENT transformation)
We used the following monotonic ordering for rule removal:
Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :
POL(f_{a,g_1,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,g_1,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,g_1,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,g_1,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,g_1,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,g_1,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,f_3,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,g_1,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,f_3,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,f_3,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,g_1,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,f_3,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,a,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,a,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,a,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,a,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,b,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,b,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,b,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{a,b,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,f_3,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,f_3,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,f_3,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,f_3,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,a,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,a,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,a,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,a,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,b,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,b,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,b,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{b,b,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,a,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,b,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,a,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,b,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,a,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,b,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,a,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,b,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,a,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,b,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,a,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,b,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,a,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,b,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,a,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,b,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,f_3,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,f_3,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,g_1,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,g_1,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,f_3,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,f_3,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,g_1,a}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,g_1,b}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,f_3,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,f_3,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,g_1,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{f_3,g_1,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,f_3,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,f_3,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,g_1,f_3}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(f_{g_1,g_1,g_1}(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
Rules from R:
f_{a,g_1,f_3}(a, g_{f_3}(y), z) → f_{b,g_1,g_1}(b, g_{f_3}(y), g_{f_3}(y))
f_{a,g_1,a}(a, g_{f_3}(y), z) → f_{b,g_1,g_1}(b, g_{f_3}(y), g_{f_3}(y))
f_{a,g_1,g_1}(a, g_{f_3}(y), z) → f_{b,g_1,g_1}(b, g_{f_3}(y), g_{f_3}(y))
f_{a,g_1,b}(a, g_{f_3}(y), z) → f_{b,g_1,g_1}(b, g_{f_3}(y), g_{f_3}(y))
f_{a,g_1,f_3}(a, g_{a}(y), z) → f_{b,g_1,g_1}(b, g_{a}(y), g_{a}(y))
f_{a,g_1,a}(a, g_{a}(y), z) → f_{b,g_1,g_1}(b, g_{a}(y), g_{a}(y))
f_{a,g_1,g_1}(a, g_{a}(y), z) → f_{b,g_1,g_1}(b, g_{a}(y), g_{a}(y))
f_{a,g_1,b}(a, g_{a}(y), z) → f_{b,g_1,g_1}(b, g_{a}(y), g_{a}(y))
f_{a,g_1,f_3}(a, g_{g_1}(y), z) → f_{b,g_1,g_1}(b, g_{g_1}(y), g_{g_1}(y))
f_{a,g_1,a}(a, g_{g_1}(y), z) → f_{b,g_1,g_1}(b, g_{g_1}(y), g_{g_1}(y))
f_{a,g_1,g_1}(a, g_{g_1}(y), z) → f_{b,g_1,g_1}(b, g_{g_1}(y), g_{g_1}(y))
f_{a,g_1,b}(a, g_{g_1}(y), z) → f_{b,g_1,g_1}(b, g_{g_1}(y), g_{g_1}(y))
f_{a,g_1,f_3}(a, g_{b}(y), z) → f_{b,g_1,g_1}(b, g_{b}(y), g_{b}(y))
f_{a,g_1,a}(a, g_{b}(y), z) → f_{b,g_1,g_1}(b, g_{b}(y), g_{b}(y))
f_{a,g_1,g_1}(a, g_{b}(y), z) → f_{b,g_1,g_1}(b, g_{b}(y), g_{b}(y))
f_{a,g_1,b}(a, g_{b}(y), z) → f_{b,g_1,g_1}(b, g_{b}(y), g_{b}(y))
f_{b,g_1,f_3}(b, g_{f_3}(y), z) → f_{a,f_3,f_3}(a, y, z)
f_{b,g_1,a}(b, g_{f_3}(y), z) → f_{a,f_3,a}(a, y, z)
f_{b,g_1,g_1}(b, g_{f_3}(y), z) → f_{a,f_3,g_1}(a, y, z)
f_{b,g_1,b}(b, g_{f_3}(y), z) → f_{a,f_3,b}(a, y, z)
f_{b,g_1,f_3}(b, g_{a}(y), z) → f_{a,a,f_3}(a, y, z)
f_{b,g_1,a}(b, g_{a}(y), z) → f_{a,a,a}(a, y, z)
f_{b,g_1,g_1}(b, g_{a}(y), z) → f_{a,a,g_1}(a, y, z)
f_{b,g_1,g_1}(b, g_{g_1}(y), z) → f_{a,g_1,g_1}(a, y, z)
f_{b,g_1,b}(b, g_{g_1}(y), z) → f_{a,g_1,b}(a, y, z)
f_{b,g_1,f_3}(b, g_{b}(y), z) → f_{a,b,f_3}(a, y, z)
f_{b,g_1,a}(b, g_{b}(y), z) → f_{a,b,a}(a, y, z)
f_{b,g_1,g_1}(b, g_{b}(y), z) → f_{a,b,g_1}(a, y, z)
f_{b,g_1,b}(b, g_{b}(y), z) → f_{a,b,b}(a, y, z)
f_{a,f_3,a}(a, z1, z2) → f_{b,f_3,a}(b, z1, z2)
f_{a,f_3,b}(a, z1, z2) → f_{b,f_3,b}(b, z1, z2)
f_{a,a,b}(a, z1, z2) → f_{b,a,b}(b, z1, z2)
f_{a,g_1,f_3}(a, z1, z2) → f_{b,g_1,f_3}(b, z1, z2)
f_{a,g_1,a}(a, z1, z2) → f_{b,g_1,a}(b, z1, z2)
f_{a,b,a}(a, z1, z2) → f_{b,b,a}(b, z1, z2)
f_{a,b,g_1}(a, z1, z2) → f_{b,b,g_1}(b, z1, z2)
f_{f_3,a,a}(z0, a, z2) → f_{f_3,b,a}(z0, b, z2)
f_{a,a,a}(z0, a, z2) → f_{a,b,a}(z0, b, z2)
f_{a,a,b}(z0, a, z2) → f_{a,b,b}(z0, b, z2)
f_{g_1,a,a}(z0, a, z2) → f_{g_1,b,a}(z0, b, z2)
f_{b,a,a}(z0, a, z2) → f_{b,b,a}(z0, b, z2)
f_{b,a,b}(z0, a, z2) → f_{b,b,b}(z0, b, z2)
f_{f_3,f_3,a}(z0, z1, a) → f_{f_3,f_3,b}(z0, z1, b)
f_{f_3,g_1,a}(z0, z1, a) → f_{f_3,g_1,b}(z0, z1, b)
f_{f_3,b,a}(z0, z1, a) → f_{f_3,b,b}(z0, z1, b)
f_{a,f_3,a}(z0, z1, a) → f_{a,f_3,b}(z0, z1, b)
f_{a,a,a}(z0, z1, a) → f_{a,a,b}(z0, z1, b)
f_{a,g_1,a}(z0, z1, a) → f_{a,g_1,b}(z0, z1, b)
f_{a,b,a}(z0, z1, a) → f_{a,b,b}(z0, z1, b)
f_{g_1,a,a}(z0, z1, a) → f_{g_1,a,b}(z0, z1, b)
f_{g_1,g_1,a}(z0, z1, a) → f_{g_1,g_1,b}(z0, z1, b)
f_{g_1,b,a}(z0, z1, a) → f_{g_1,b,b}(z0, z1, b)
f_{b,f_3,a}(z0, z1, a) → f_{b,f_3,b}(z0, z1, b)
f_{b,a,a}(z0, z1, a) → f_{b,a,b}(z0, z1, b)
f_{b,g_1,a}(z0, z1, a) → f_{b,g_1,b}(z0, z1, b)
f_{b,b,a}(z0, z1, a) → f_{b,b,b}(z0, z1, b)
Rules from S:
f_{f_3,f_3,a}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{a}(z))
f_{f_3,a,f_3}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{f_3}(z))
f_{f_3,g_1,a}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{a}(z))
f_{f_3,b,f_3}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{f_3}(z))
f_{f_3,b,b}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{b}(z))
f_{a,f_3,f_3}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{f_3}(z))
f_{a,f_3,a}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{a}(z))
f_{a,f_3,b}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{b}(z))
f_{a,a,f_3}(x, y, z) → f_{a,a,g_1}(x, y, g_{f_3}(z))
f_{a,g_1,f_3}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{f_3}(z))
f_{a,g_1,a}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{a}(z))
f_{a,b,f_3}(x, y, z) → f_{a,b,g_1}(x, y, g_{f_3}(z))
f_{g_1,a,f_3}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{f_3}(z))
f_{g_1,b,f_3}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{f_3}(z))
f_{g_1,b,a}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{a}(z))
f_{b,f_3,f_3}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{f_3}(z))
f_{b,f_3,a}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{a}(z))
f_{b,f_3,b}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{b}(z))
f_{b,a,f_3}(x, y, z) → f_{b,a,g_1}(x, y, g_{f_3}(z))
f_{b,a,a}(x, y, z) → f_{b,a,g_1}(x, y, g_{a}(z))
f_{b,a,b}(x, y, z) → f_{b,a,g_1}(x, y, g_{b}(z))
f_{b,g_1,a}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{a}(z))
f_{b,b,f_3}(x, y, z) → f_{b,b,g_1}(x, y, g_{f_3}(z))
f_{b,b,a}(x, y, z) → f_{b,b,g_1}(x, y, g_{a}(z))
(6) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
f_{b,g_1,b}(b, g_{a}(y), z) → f_{a,a,b}(a, y, z)
f_{b,g_1,f_3}(b, g_{g_1}(y), z) → f_{a,g_1,f_3}(a, y, z)
f_{b,g_1,a}(b, g_{g_1}(y), z) → f_{a,g_1,a}(a, y, z)
f_{a,f_3,f_3}(a, z1, z2) → f_{b,f_3,f_3}(b, z1, z2)
f_{a,f_3,g_1}(a, z1, z2) → f_{b,f_3,g_1}(b, z1, z2)
f_{a,a,f_3}(a, z1, z2) → f_{b,a,f_3}(b, z1, z2)
f_{a,a,a}(a, z1, z2) → f_{b,a,a}(b, z1, z2)
f_{a,a,g_1}(a, z1, z2) → f_{b,a,g_1}(b, z1, z2)
f_{a,g_1,g_1}(a, z1, z2) → f_{b,g_1,g_1}(b, z1, z2)
f_{a,g_1,b}(a, z1, z2) → f_{b,g_1,b}(b, z1, z2)
f_{a,b,f_3}(a, z1, z2) → f_{b,b,f_3}(b, z1, z2)
f_{a,b,b}(a, z1, z2) → f_{b,b,b}(b, z1, z2)
f_{f_3,a,f_3}(z0, a, z2) → f_{f_3,b,f_3}(z0, b, z2)
f_{f_3,a,g_1}(z0, a, z2) → f_{f_3,b,g_1}(z0, b, z2)
f_{f_3,a,b}(z0, a, z2) → f_{f_3,b,b}(z0, b, z2)
f_{a,a,f_3}(z0, a, z2) → f_{a,b,f_3}(z0, b, z2)
f_{a,a,g_1}(z0, a, z2) → f_{a,b,g_1}(z0, b, z2)
f_{g_1,a,f_3}(z0, a, z2) → f_{g_1,b,f_3}(z0, b, z2)
f_{g_1,a,g_1}(z0, a, z2) → f_{g_1,b,g_1}(z0, b, z2)
f_{g_1,a,b}(z0, a, z2) → f_{g_1,b,b}(z0, b, z2)
f_{b,a,f_3}(z0, a, z2) → f_{b,b,f_3}(z0, b, z2)
f_{b,a,g_1}(z0, a, z2) → f_{b,b,g_1}(z0, b, z2)
f_{f_3,a,a}(z0, z1, a) → f_{f_3,a,b}(z0, z1, b)
f_{g_1,f_3,a}(z0, z1, a) → f_{g_1,f_3,b}(z0, z1, b)
g_{a}(a) → g_{b}(b)
The relative TRS consists of the following S rules:
f_{f_3,f_3,f_3}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{f_3}(z))
f_{f_3,f_3,g_1}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{g_1}(z))
f_{f_3,f_3,b}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{b}(z))
f_{f_3,a,a}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{a}(z))
f_{f_3,a,g_1}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{g_1}(z))
f_{f_3,a,b}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{b}(z))
f_{f_3,g_1,f_3}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{f_3}(z))
f_{f_3,g_1,g_1}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{g_1}(z))
f_{f_3,g_1,b}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{b}(z))
f_{f_3,b,a}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{a}(z))
f_{f_3,b,g_1}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{g_1}(z))
f_{a,f_3,g_1}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{g_1}(z))
f_{a,a,a}(x, y, z) → f_{a,a,g_1}(x, y, g_{a}(z))
f_{a,a,g_1}(x, y, z) → f_{a,a,g_1}(x, y, g_{g_1}(z))
f_{a,a,b}(x, y, z) → f_{a,a,g_1}(x, y, g_{b}(z))
f_{a,g_1,g_1}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{g_1}(z))
f_{a,g_1,b}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{b}(z))
f_{a,b,a}(x, y, z) → f_{a,b,g_1}(x, y, g_{a}(z))
f_{a,b,g_1}(x, y, z) → f_{a,b,g_1}(x, y, g_{g_1}(z))
f_{a,b,b}(x, y, z) → f_{a,b,g_1}(x, y, g_{b}(z))
f_{g_1,f_3,f_3}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{f_3}(z))
f_{g_1,f_3,a}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{a}(z))
f_{g_1,f_3,g_1}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{g_1}(z))
f_{g_1,f_3,b}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{b}(z))
f_{g_1,a,a}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{a}(z))
f_{g_1,a,g_1}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{g_1}(z))
f_{g_1,a,b}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{b}(z))
f_{g_1,g_1,f_3}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{f_3}(z))
f_{g_1,g_1,a}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{a}(z))
f_{g_1,g_1,g_1}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{g_1}(z))
f_{g_1,g_1,b}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{b}(z))
f_{g_1,b,g_1}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{g_1}(z))
f_{g_1,b,b}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{b}(z))
f_{b,f_3,g_1}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{g_1}(z))
f_{b,a,g_1}(x, y, z) → f_{b,a,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,f_3}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{f_3}(z))
f_{b,g_1,g_1}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,b}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{b}(z))
f_{b,b,g_1}(x, y, z) → f_{b,b,g_1}(x, y, g_{g_1}(z))
f_{b,b,b}(x, y, z) → f_{b,b,g_1}(x, y, g_{b}(z))
(7) RelTRSRRRProof (EQUIVALENT transformation)
We used the following monotonic ordering for rule removal:
Polynomial interpretation [POLO]:
POL(a) = 0
POL(b) = 0
POL(f_{a,a,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,a,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,a,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,b,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,b,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,b,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,f_3,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,f_3,g_1}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,g_1,a}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,g_1,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,g_1,f_3}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,g_1,g_1}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{b,a,a}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,a,f_3}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,b,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{b,b,f_3}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,f_3,f_3}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,g_1,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{b,g_1,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,g_1,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{b,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,a,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,a,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,a,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,b,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,b,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,b,f_3}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,f_3,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,f_3,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,g_1,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,g_1,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,a,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,a,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,a,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,a,g_1}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,b,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,b,f_3}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,f_3,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,f_3,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,f_3,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,g_1,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,g_1,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,g_1,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(g_{a}(x1)) = x1
POL(g_{b}(x1)) = x1
POL(g_{f_3}(x1)) = x1
POL(g_{g_1}(x1)) = x1
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
Rules from R:
f_{b,g_1,f_3}(b, g_{g_1}(y), z) → f_{a,g_1,f_3}(a, y, z)
f_{b,g_1,a}(b, g_{g_1}(y), z) → f_{a,g_1,a}(a, y, z)
f_{a,f_3,f_3}(a, z1, z2) → f_{b,f_3,f_3}(b, z1, z2)
f_{a,f_3,g_1}(a, z1, z2) → f_{b,f_3,g_1}(b, z1, z2)
f_{a,a,f_3}(a, z1, z2) → f_{b,a,f_3}(b, z1, z2)
f_{a,a,a}(a, z1, z2) → f_{b,a,a}(b, z1, z2)
f_{a,g_1,g_1}(a, z1, z2) → f_{b,g_1,g_1}(b, z1, z2)
f_{a,g_1,b}(a, z1, z2) → f_{b,g_1,b}(b, z1, z2)
f_{a,b,f_3}(a, z1, z2) → f_{b,b,f_3}(b, z1, z2)
f_{f_3,a,f_3}(z0, a, z2) → f_{f_3,b,f_3}(z0, b, z2)
f_{f_3,a,b}(z0, a, z2) → f_{f_3,b,b}(z0, b, z2)
f_{g_1,a,f_3}(z0, a, z2) → f_{g_1,b,f_3}(z0, b, z2)
f_{g_1,a,g_1}(z0, a, z2) → f_{g_1,b,g_1}(z0, b, z2)
f_{g_1,f_3,a}(z0, z1, a) → f_{g_1,f_3,b}(z0, z1, b)
Rules from S:
f_{f_3,f_3,f_3}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{f_3}(z))
f_{f_3,f_3,b}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{b}(z))
f_{f_3,a,a}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{a}(z))
f_{f_3,a,b}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{b}(z))
f_{f_3,g_1,f_3}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{f_3}(z))
f_{f_3,g_1,b}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{b}(z))
f_{f_3,b,a}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{a}(z))
f_{a,a,a}(x, y, z) → f_{a,a,g_1}(x, y, g_{a}(z))
f_{a,b,a}(x, y, z) → f_{a,b,g_1}(x, y, g_{a}(z))
f_{a,b,b}(x, y, z) → f_{a,b,g_1}(x, y, g_{b}(z))
f_{g_1,f_3,f_3}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{f_3}(z))
f_{g_1,f_3,a}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{a}(z))
f_{g_1,g_1,f_3}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{f_3}(z))
f_{g_1,g_1,a}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{a}(z))
f_{g_1,g_1,b}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{b}(z))
f_{g_1,b,b}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{b}(z))
f_{b,g_1,f_3}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{f_3}(z))
f_{b,b,b}(x, y, z) → f_{b,b,g_1}(x, y, g_{b}(z))
(8) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
f_{b,g_1,b}(b, g_{a}(y), z) → f_{a,a,b}(a, y, z)
f_{a,a,g_1}(a, z1, z2) → f_{b,a,g_1}(b, z1, z2)
f_{a,b,b}(a, z1, z2) → f_{b,b,b}(b, z1, z2)
f_{f_3,a,g_1}(z0, a, z2) → f_{f_3,b,g_1}(z0, b, z2)
f_{a,a,f_3}(z0, a, z2) → f_{a,b,f_3}(z0, b, z2)
f_{a,a,g_1}(z0, a, z2) → f_{a,b,g_1}(z0, b, z2)
f_{g_1,a,b}(z0, a, z2) → f_{g_1,b,b}(z0, b, z2)
f_{b,a,f_3}(z0, a, z2) → f_{b,b,f_3}(z0, b, z2)
f_{b,a,g_1}(z0, a, z2) → f_{b,b,g_1}(z0, b, z2)
f_{f_3,a,a}(z0, z1, a) → f_{f_3,a,b}(z0, z1, b)
g_{a}(a) → g_{b}(b)
The relative TRS consists of the following S rules:
f_{f_3,f_3,g_1}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{g_1}(z))
f_{f_3,a,g_1}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{g_1}(z))
f_{f_3,g_1,g_1}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{g_1}(z))
f_{f_3,b,g_1}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{g_1}(z))
f_{a,f_3,g_1}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{g_1}(z))
f_{a,a,g_1}(x, y, z) → f_{a,a,g_1}(x, y, g_{g_1}(z))
f_{a,a,b}(x, y, z) → f_{a,a,g_1}(x, y, g_{b}(z))
f_{a,g_1,g_1}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{g_1}(z))
f_{a,g_1,b}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{b}(z))
f_{a,b,g_1}(x, y, z) → f_{a,b,g_1}(x, y, g_{g_1}(z))
f_{g_1,f_3,g_1}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{g_1}(z))
f_{g_1,f_3,b}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{b}(z))
f_{g_1,a,a}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{a}(z))
f_{g_1,a,g_1}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{g_1}(z))
f_{g_1,a,b}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{b}(z))
f_{g_1,g_1,g_1}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{g_1}(z))
f_{g_1,b,g_1}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{g_1}(z))
f_{b,f_3,g_1}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{g_1}(z))
f_{b,a,g_1}(x, y, z) → f_{b,a,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,g_1}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,b}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{b}(z))
f_{b,b,g_1}(x, y, z) → f_{b,b,g_1}(x, y, g_{g_1}(z))
(9) RelTRSRRRProof (EQUIVALENT transformation)
We used the following monotonic ordering for rule removal:
Polynomial interpretation [POLO]:
POL(a) = 1
POL(b) = 1
POL(f_{a,a,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,a,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,b,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,b,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,g_1,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,a,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{b,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,b,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,b,f_3}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,g_1,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,a,a}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,a,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,a,g_1}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,b,g_1}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,a,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,a,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,b,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,f_3,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{g_1,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(g_{a}(x1)) = x1
POL(g_{b}(x1)) = x1
POL(g_{g_1}(x1)) = x1
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
Rules from R:
f_{g_1,a,b}(z0, a, z2) → f_{g_1,b,b}(z0, b, z2)
f_{b,a,f_3}(z0, a, z2) → f_{b,b,f_3}(z0, b, z2)
Rules from S:
f_{a,g_1,b}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{b}(z))
f_{g_1,f_3,b}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{b}(z))
f_{g_1,a,a}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{a}(z))
f_{g_1,a,b}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{b}(z))
(10) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
f_{b,g_1,b}(b, g_{a}(y), z) → f_{a,a,b}(a, y, z)
f_{a,a,g_1}(a, z1, z2) → f_{b,a,g_1}(b, z1, z2)
f_{a,b,b}(a, z1, z2) → f_{b,b,b}(b, z1, z2)
f_{f_3,a,g_1}(z0, a, z2) → f_{f_3,b,g_1}(z0, b, z2)
f_{a,a,f_3}(z0, a, z2) → f_{a,b,f_3}(z0, b, z2)
f_{a,a,g_1}(z0, a, z2) → f_{a,b,g_1}(z0, b, z2)
f_{b,a,g_1}(z0, a, z2) → f_{b,b,g_1}(z0, b, z2)
f_{f_3,a,a}(z0, z1, a) → f_{f_3,a,b}(z0, z1, b)
g_{a}(a) → g_{b}(b)
The relative TRS consists of the following S rules:
f_{f_3,f_3,g_1}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{g_1}(z))
f_{f_3,a,g_1}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{g_1}(z))
f_{f_3,g_1,g_1}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{g_1}(z))
f_{f_3,b,g_1}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{g_1}(z))
f_{a,f_3,g_1}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{g_1}(z))
f_{a,a,g_1}(x, y, z) → f_{a,a,g_1}(x, y, g_{g_1}(z))
f_{a,a,b}(x, y, z) → f_{a,a,g_1}(x, y, g_{b}(z))
f_{a,g_1,g_1}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{g_1}(z))
f_{a,b,g_1}(x, y, z) → f_{a,b,g_1}(x, y, g_{g_1}(z))
f_{g_1,f_3,g_1}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{g_1}(z))
f_{g_1,a,g_1}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{g_1}(z))
f_{g_1,g_1,g_1}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{g_1}(z))
f_{g_1,b,g_1}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{g_1}(z))
f_{b,f_3,g_1}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{g_1}(z))
f_{b,a,g_1}(x, y, z) → f_{b,a,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,g_1}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,b}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{b}(z))
f_{b,b,g_1}(x, y, z) → f_{b,b,g_1}(x, y, g_{g_1}(z))
(11) RelTRSRRRProof (EQUIVALENT transformation)
We used the following monotonic ordering for rule removal:
Polynomial interpretation [POLO]:
POL(a) = 1
POL(b) = 1
POL(f_{a,a,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,a,f_3}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,a,g_1}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,b,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,b,f_3}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,a,g_1}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{b,b,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,g_1,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,a,a}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,a,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,a,g_1}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{f_3,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(g_{a}(x1)) = 1 + x1
POL(g_{b}(x1)) = x1
POL(g_{g_1}(x1)) = x1
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
Rules from R:
f_{a,b,b}(a, z1, z2) → f_{b,b,b}(b, z1, z2)
f_{f_3,a,g_1}(z0, a, z2) → f_{f_3,b,g_1}(z0, b, z2)
f_{a,a,f_3}(z0, a, z2) → f_{a,b,f_3}(z0, b, z2)
f_{a,a,g_1}(z0, a, z2) → f_{a,b,g_1}(z0, b, z2)
f_{b,a,g_1}(z0, a, z2) → f_{b,b,g_1}(z0, b, z2)
f_{f_3,a,a}(z0, z1, a) → f_{f_3,a,b}(z0, z1, b)
g_{a}(a) → g_{b}(b)
Rules from S:
none
(12) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
f_{b,g_1,b}(b, g_{a}(y), z) → f_{a,a,b}(a, y, z)
f_{a,a,g_1}(a, z1, z2) → f_{b,a,g_1}(b, z1, z2)
The relative TRS consists of the following S rules:
f_{f_3,f_3,g_1}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{g_1}(z))
f_{f_3,a,g_1}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{g_1}(z))
f_{f_3,g_1,g_1}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{g_1}(z))
f_{f_3,b,g_1}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{g_1}(z))
f_{a,f_3,g_1}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{g_1}(z))
f_{a,a,g_1}(x, y, z) → f_{a,a,g_1}(x, y, g_{g_1}(z))
f_{a,a,b}(x, y, z) → f_{a,a,g_1}(x, y, g_{b}(z))
f_{a,g_1,g_1}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{g_1}(z))
f_{a,b,g_1}(x, y, z) → f_{a,b,g_1}(x, y, g_{g_1}(z))
f_{g_1,f_3,g_1}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{g_1}(z))
f_{g_1,a,g_1}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{g_1}(z))
f_{g_1,g_1,g_1}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{g_1}(z))
f_{g_1,b,g_1}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{g_1}(z))
f_{b,f_3,g_1}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{g_1}(z))
f_{b,a,g_1}(x, y, z) → f_{b,a,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,g_1}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,b}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{b}(z))
f_{b,b,g_1}(x, y, z) → f_{b,b,g_1}(x, y, g_{g_1}(z))
(13) RelTRSRRRProof (EQUIVALENT transformation)
We used the following monotonic ordering for rule removal:
Polynomial interpretation [POLO]:
POL(a) = 0
POL(b) = 0
POL(f_{a,a,b}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,g_1,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{b,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(g_{a}(x1)) = 1 + x1
POL(g_{b}(x1)) = x1
POL(g_{g_1}(x1)) = x1
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
Rules from R:
f_{b,g_1,b}(b, g_{a}(y), z) → f_{a,a,b}(a, y, z)
Rules from S:
f_{b,g_1,b}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{b}(z))
(14) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
f_{a,a,g_1}(a, z1, z2) → f_{b,a,g_1}(b, z1, z2)
The relative TRS consists of the following S rules:
f_{f_3,f_3,g_1}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{g_1}(z))
f_{f_3,a,g_1}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{g_1}(z))
f_{f_3,g_1,g_1}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{g_1}(z))
f_{f_3,b,g_1}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{g_1}(z))
f_{a,f_3,g_1}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{g_1}(z))
f_{a,a,g_1}(x, y, z) → f_{a,a,g_1}(x, y, g_{g_1}(z))
f_{a,a,b}(x, y, z) → f_{a,a,g_1}(x, y, g_{b}(z))
f_{a,g_1,g_1}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{g_1}(z))
f_{a,b,g_1}(x, y, z) → f_{a,b,g_1}(x, y, g_{g_1}(z))
f_{g_1,f_3,g_1}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{g_1}(z))
f_{g_1,a,g_1}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{g_1}(z))
f_{g_1,g_1,g_1}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{g_1}(z))
f_{g_1,b,g_1}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{g_1}(z))
f_{b,f_3,g_1}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{g_1}(z))
f_{b,a,g_1}(x, y, z) → f_{b,a,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,g_1}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{g_1}(z))
f_{b,b,g_1}(x, y, z) → f_{b,b,g_1}(x, y, g_{g_1}(z))
(15) RelTRSRRRProof (EQUIVALENT transformation)
We used the following monotonic ordering for rule removal:
Polynomial interpretation [POLO]:
POL(a) = 1
POL(b) = 0
POL(f_{a,a,b}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,a,g_1}(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f_{a,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{a,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{b,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{f_3,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,a,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,b,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,f_3,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(f_{g_1,g_1,g_1}(x1, x2, x3)) = x1 + x2 + x3
POL(g_{b}(x1)) = x1
POL(g_{g_1}(x1)) = x1
With this ordering the following rules can be removed [MATRO] because they are oriented strictly:
Rules from R:
f_{a,a,g_1}(a, z1, z2) → f_{b,a,g_1}(b, z1, z2)
Rules from S:
none
(16) Obligation:
Relative term rewrite system:
R is empty.
The relative TRS consists of the following S rules:
f_{f_3,f_3,g_1}(x, y, z) → f_{f_3,f_3,g_1}(x, y, g_{g_1}(z))
f_{f_3,a,g_1}(x, y, z) → f_{f_3,a,g_1}(x, y, g_{g_1}(z))
f_{f_3,g_1,g_1}(x, y, z) → f_{f_3,g_1,g_1}(x, y, g_{g_1}(z))
f_{f_3,b,g_1}(x, y, z) → f_{f_3,b,g_1}(x, y, g_{g_1}(z))
f_{a,f_3,g_1}(x, y, z) → f_{a,f_3,g_1}(x, y, g_{g_1}(z))
f_{a,a,g_1}(x, y, z) → f_{a,a,g_1}(x, y, g_{g_1}(z))
f_{a,a,b}(x, y, z) → f_{a,a,g_1}(x, y, g_{b}(z))
f_{a,g_1,g_1}(x, y, z) → f_{a,g_1,g_1}(x, y, g_{g_1}(z))
f_{a,b,g_1}(x, y, z) → f_{a,b,g_1}(x, y, g_{g_1}(z))
f_{g_1,f_3,g_1}(x, y, z) → f_{g_1,f_3,g_1}(x, y, g_{g_1}(z))
f_{g_1,a,g_1}(x, y, z) → f_{g_1,a,g_1}(x, y, g_{g_1}(z))
f_{g_1,g_1,g_1}(x, y, z) → f_{g_1,g_1,g_1}(x, y, g_{g_1}(z))
f_{g_1,b,g_1}(x, y, z) → f_{g_1,b,g_1}(x, y, g_{g_1}(z))
f_{b,f_3,g_1}(x, y, z) → f_{b,f_3,g_1}(x, y, g_{g_1}(z))
f_{b,a,g_1}(x, y, z) → f_{b,a,g_1}(x, y, g_{g_1}(z))
f_{b,g_1,g_1}(x, y, z) → f_{b,g_1,g_1}(x, y, g_{g_1}(z))
f_{b,b,g_1}(x, y, z) → f_{b,b,g_1}(x, y, g_{g_1}(z))
(17) RIsEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(18) YES