科目番号	I440	単 位 数	2
授業科目名	高機能オペレーティングシステム Enhanced Operating Systems		
担当教員	田中 清史		

■達成目標

分散環境および組込みシステムにおけるオペレーティングシステムの概念、理論、技術および実装について深く理解することにより、分散システム/組込みシステムを研究対象として取扱う能力・研究姿勢を獲得できる。

■概要

分散システムにおけるプロセスとスレッド、通信モデル、並列・分散スケジューリング、コンシステンシモデル、セキュリティ、リアルタイム組込みシステム、リアルタイムスケジューリング、資源アクセスプロトコル、リアルタイムカーネル、組込み OS について学ぶ。

■教科書

毎回の講義で資料を配付

■参老書

- 1. A.S. Tanenbaum, "Distributed Operating Systems", Prentice-Hall, 1995.
- 2. Giorgio C.Buttazzo, "Hard Real-Time Computing Systems Predictable Scheduling Algorithms and Applications", 3rd edition, Springer, 2011

■関連科目

I233 オペレーティングシステム特論

■履修条件

I233 (オペレーティングシステム特論) の知識を前提とする。

■講義計画

- 1. 並列・分散プロセス (プロセス、スレッド、マルチスレッド)
- 2. 通信モデル (メッセージ交換、共有アドレス空間、データ並列、データフロー、シストリック)
- 3. 並列・分散スケジューリング (コスケジューリング、資源アフィニティ、集中型/階層型/発見的)
- 4. コンシステンシモデル 1 (Strict/Sequential/Causal/PRAM/Weak/Release/Entry consistency)
- 5. コンシステンシモデル2 (ソフトウェア分散共有メモリ)
- 6. セキュリティ (暗号、ユーザ認証、セキュリティ攻撃、保護機構)
- 7. リアルタイムシステム (リアルタイムタスク、リアルタイム制約)
- 8. リアルタイムスケジューリング1 (非周期タスクスケジューリング)
- 9. リアルタイムスケジューリング 2 (周期タスクスケジューリング)
- 10. リアルタイムスケジューリング3 (固定優先度サーバ)
- 11. リアルタイムスケジューリング4 (動的優先度サーバ)
- 12. 資源アクセスプロトコル(セマフォ、優先度逆転問題、優先度継承/上限プロトコル)
- 13. リアルタイムカーネル (タスク状態、データ構造、カーネルプリミティブ)
- 14. まとめ及び演習

■準備学修等の具体的な指示

本学では、15時間の授業を含む45時間の学修をもって1単位とすることを踏まえて、準備学修に取り組むこと。

次回の授業範囲を予習し、専門用語の意味等を理解しておくこと。

■評価の観点

分散環境/組込みシステムにおけるオペレーティングシステムの技術に関する理解度による。

■評価方法

定期的なレポート提出、試験による。

■評価基準

定期的なレポート提出 (40%)、試験 (60%)

■獲得可能な能力・性質

先端科学技術分野の専門家としての、

- <社会的能力> 幅広い視野、論理的思考力
- <創出力> 専門的知識とスキルの探求力、発想力
- <実践力・行動力> 情報収集力、模索的推進力、課題定義力

■講義アーカイブ

- <収録内容>講義のみ収録
- <配信方法>一般配信(学内ネットワークでいつでも視聴可能)

Course Number	I440	Number of credits	2
Course Title	Enhanced Operating Systems		
Instructor	TANAKA, Kiyofumi	_	_

■Course goals

Students are able to learn the ability and attitude to conduct research distributed/embedded systems by gaining deeper knowledge of concepts, theory, techniques, and implementation methods of distributed/embedded operating systems.

■Course content

Students study processes and threads in distributed systems, communication architecture, parallel/distributed scheduling, consistency models, security, real-time embedded systems, real-time scheduling, resource access protocols, real-time kernel, and embedded OS.

■ Textbook

Materials are provided every time

■ References

- 1. A.S. Tanenbaum, "Distributed Operating Systems", Prentice-Hall, 1995.
- 2. Giorgio C.Buttazzo, "Hard Real-Time Computing Systems Predictable Scheduling Algorithms and Applications", 3rd edition, Springer, 2011

■ Related courses

I233 "Operating Systems"

■Prerequisites

Students who attend this lecture need to have the knowledge of I233 "Operating Systems".

■ Schedule

- 1. Parallel/Distributed Processes (Processes, threads, multithreads)
- 2. Communication Architecture (Message passing, shared address space, data parrallel, dataflow, systolic)
- 3. Parallel/Distributed Scheduling (Coscheduling, resource affinity, centralized/hierarchical/heuristic)
- 4. Consistency Models 1 (Strict/sequential/causal/PRAM/weak/release/entry consistency)
- 5. Consistency Models 2 (Software distributed shared memory)
- 6. Security (Cryptography, user authentication, attacks, protection mechanisms)
- 7. Real-time Systems (Real-time tasks, real-time constraints)
- 8. Real-time Scheduling 1 (Aperiodic task scheduling)
- 9. Real-time Scheduling 2 (Periodic task scheduling)
- 10. Real-time Scheduling 3 (Fixed-priority servers)
- 11. Real-time Scheduling 4 (Dynamic-priority servers)
- 12. Resource Access Protocols (Semaphore, priority inversion, priority inheritance/ceiling protocol)
- 13. Real-time Kernel (Task states, data structure, kernel primitives)
- 14. Review and Exercise

■ How to prepare for this course

Be well prepared for the course, taking it into consideration that one credit is awarded for 45 study hours including self-study time in addition to that of in total 15-hour lectures.

It is important to check and understand the definitions and meanings of the keywords in the next lecture.

■ Viewpoint of evaluation

Comprehension of techniques of operating systems in distributed/embedded systems.

■Evaluation method

Reports and examination.

■Evaluation criteria

Reports (40%), examination (60%)

■Abilities/traits that can be acquired

- · Social competencies: broad interests, logical thinking
- · Creative abilities: ambition for expertise and skills, ideation
- · Practical abilities: information gathering, exploratory propulsion, problem definition

■Lecture Archive

What to record: Lectures only

How to broadcast: General (available to watch over internal network anytime)