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Abstract

Video-based sign language recognition is vital for improving communication for the
deaf and hard of hearing. However, due to a lack of resources, creating and maintaining the
quality of Thai sign language video datasets is challenging. To address this issue, we assess
multiple models with a novel dataset of 90 signs, covering the full letters of alphabets, vowels,
intonation marks, and numbers, as demonstrated by 43 signers. We investigate seven deep
learning models with three distinct modalities for our analysis: video-only methods (including
RGB-sequencing-based CNN-LSTM and VGG-LSTM), human body joint coordinate
sequences (processed by LSTM, Bi-LSTM, GRU, and Transformer models), and skeleton
analysis (using TGCN with graph-structured skeleton representation). A thorough assessment
of these models is conducted across seven circumstances, encompassing single-hand postures,
single-hand motions with one, two, and three strokes, and two-hand postures with static and
dynamic point-on-hand interactions. The research highlights that the TGCN model is the
optimal lightweight model in all scenarios. In single-hand pose cases, a combination of the
Transformer and TGCN models of two modalities delivers outstanding performance, excelling
in four particular conditions: single-hand poses, single-hand poses requiring one, two, and three
strokes. In contrast, two-hand poses with static or dynamic point-on-hand interactions present
substantial challenges, as the data from joint coordinates is inadequate due to hand obstructions
stemming from insufficient coordinate sequence data and the lack of a detailed skeletal graph
structure. The study recommends integrating RGB-sequencing with visual modality to enhance
the accuracy of two-handed sign language gestures. Moreover, experimental results on our
dataset show that our method outperforms previous state-of-the-art methods significantly in
five out of seven conditional hand pose experiments, especially two-hand poses.
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Research Content

Sign language plays a critical role as a communication medium, predominantly within
the communities of individuals who are deaf or hard of hearing. This form of communication
comprises a comprehensive range of hand signs, facial expressions, and body movements, all
of which work together to convey meaning independently of spoken languages. Over the years,
sign language has gained immense recognition as a valid linguistic system, a development
largely attributed to extensive research and strong advocacy. Sign languages are diverse, with
various forms developed across different regions and communities. American Sign Language
(ASL), British Sign Language (BSL), Thai Sign Language (TSL) and French Sign Language
(LSF) are among the many distinct sign languages in use today, each with its unique grammar,
vocabulary, and syntax. These languages are not universally interchangeable, even between
countries that share the same spoken language, highlighting their unique evolution and cultural
significance.

This research primarily focuses on improving communication and accessibility for the
deaf and hard-of-hearing communities in Thailand. However, developing and maintaining
high-quality sign language datasets from video inputs is challenging due to the absence of a
standard Thai finger spelling video dataset. To address this challenge, our research aims to
accumulate a comprehensive dataset featuring 90 primary elements of Thai Finger Spelling,
which includes alphabets, vowels, intonation marks, and numbers, represented by 43 signers
from diverse backgrounds, genders, and appearances. We employ seven deep learning-based
architectures across three modalities: RGB-sequencing-based CNN-LSTM and VGG-LSTM
for the video-only modality; a sequence of coordinates of human body joints using LSTM, Bi-
LSTM, GRU, and Transformer models; and the structure of human joints modality using
TGCN, as well as various combinations of these modalities. Furthermore, we continue to
compare our method with numerous baseline and state-of-the-art models to assess the
performance benchmark of our dataset and approach.

Table: In-Sample and Out-of-Sample performance benchmarks for total two-hand poses.

No. Model App | Pose In-Sample Testin Out-of-Sample Testing
Acc Pre Rec F1 Acc Pre Rec F1
1 13D v 4352 | 46.34 | 33.13 | 3864 | 941 | 105 | 3.65 | 542
2 Fusion-3 v 7294 | 75.49 | 68.76 | 71.97 | 34.12 | 40.68 | 29.23 | 34.02
3 MEMP v 85.88 | 87.73 | 84.22 | 85.94 | 32.55 | 38.05 | 24.45 | 29.77
4 | DeepSign-CNN | v 83.52 | 85.84 | 81.47 | 83.6 | 45.88 | 60.67 | 40.18 | 48.34
5 Pose-GRU v’ 19294 | 9362 | 92.03 | 92.82 | 47.45 | 53.62 | 43.38 | 47.96
6 Pose-TGCN v' 18058 | 81.06 | 79.01 | 80.02 | 22.74 | 24.04 | 17.02 | 19.93
7 SPOTER v | 6117 | 67.49 | 51 58.1 | 32.54 | 3555 | 27.81 | 31.21
8 Bi-RNN v 8529 | 86.46 | 83.09 | 84.74 | 32.94 | 36.68 | 28.41 | 32.02
9 FNN-LSTM v’ | 79.41 | 84.16 | 73.78 | 78.63 | 29.8 | 34.12 | 22.67 | 27.24
10 ChatGPT4 4 86 82.14 | 86.07 | 83.39 n/a n/a n/a n/a
11 | Ours (T+TG) v v | 776 | 782 | 7411 | 76.1 | 53.3 | 58.3 | 47.92 | 52.6

Where: App = Appearance representation, Pose = Pose-based representation, Acc = Accuracy, Pre = Precision,
Rec = Recall and F1 = F1-score

The table, which is a part of our results, provides a comprehensive analysis of 11 notable
models, focusing on a total two-hand pose with 17 letters. The table details total parameter
usage and a variety of evaluation metrics such as accuracy, precision, recall and F1-score, all
assessed both in-sample and out-of-sample testing.



Table shows the efficacy of various models in 17 letters of total two-hand poses recognition
task, with the Pose-GRU model exhibiting superior in-sample performance, reflected by high
accuracy 92.94%, precision 93.62%, recall 92.03%, and F1 score 92.82%. This suggests that
the Pose-GRU effectively learns and captures the nuances of total two-hand poses within the
training dataset. On the other hand, the ~"Our(C+G)" model, which is an integration of CNN-
LSTM (C) model, which offer feature extraction both the visual and structural data, and GRU
(G) model, contributing a robust mechanism for understanding temporal sequences and
predicting future states based on both past and anticipated information, and utilizes both
appearance and pose-based representations, outstrips its counterparts in out-of-sample
performance with an accuracy of 53.3% and an F1-Score of 52.6%. In part of the out-of-sample
of ChatGPT4, it cannot have the capability to interpret or generate pose estimations, making it
incompatible with the specific tasks these metrics are intended to measure, or the model was
not designed for this type of evaluation. As a result, these metrics are not applicable to
ChatGPT4, and no data.

You are an expert in Thai sign language character recognition. Please classify the three images
below (images 1, 2, and 3), which are sequential images of a single character pose. Determine
which one of the following 29 Thai sign language characters or numbers the pose represents: n, @,
auu W, uNe58,7,81481"%0123456,789

@ ChatGPT
The images you've provided appear to be sequential images of a hand gesture from Thai Sign
Language. However, | must clarify that | don't have the capability to recognize sign language

characters or interpret sign language. My responses are generated based on patterns learned

during training, and | do not have the ability to visually recognize or classify sign language

characters from images.

Figure 1. Example result of ChatGPT4 in out-of-sample testing

Our experimental results demonstrate that our combination modalities can help the one-
hand and two-hand pose problems in case of insufficient data from the obscured hand's joints
and images. Therefore, integrating of many modalities is suitable for scenarios. This method is
also compatible with one-hand and two-hand poses.

Research Significance

The contribution of our work mainly lies in the following three aspects. Firstly, we have
developed a comprehensive video database for Thai Finger Spelling (TFS) in sign language,
featuring 10,467 videos of 90 unique letters demonstrated in different poses with one or both
hands, contributed to by 43 diverse signers, appearances and backgrounds. Furthermore, our
dataset comprehensively covers all aspects of TFS and nearly achieves complete balance, with
90% of the dataset obtained through direct video recording and 10% from internet sources. In
this research, our video dataset stands as the largest in the TFS domain, marking a significant



milestone. It is the first to comprehensively cover primary letter finger spelling, catering
specifically to the needs of the Thai sign language research community.

Secondly, we perform comprehensive research on designing and developing a finger
spelling recognizer for TFS based on our collected dataset. In particular, our recognizer is
analyzed based on extensive experiments in three modalities and different representation
learning techniques: RGB-sequencing-based modality on CNN-LSTM and VGG-LSTM
models, The coordinate sequence of joint structure modality in the human body with LSTM,
Bi-LSTM, GRU and Transformer models, and the graph structure on the skeleton modality
using TGCN. We have designed seven important experiments to meticulously evaluate our
framework, focusing on distinct hand poses and gestures. The experiments cover: static single-
hand poses with single-stroke, dynamic single-hand poses that require two or three strokes,
two-hand poses with a static point-on-hand, and two-hand poses with dynamic point-on-hand,
total two-hand poses. To measure the performance across these various scenarios, we use
evaluation metrics such as accuracy (Top-1), Top-3, Top-5, recall, precision, and F1-score,
testing 29 experimental models that include single-based, dual, and triple modalities. Upon
obtaining the optimal model, it will be compared against baseline and state-of-the-art models
to benchmark its performance.

Thirdly, we conduct comprehensive statistical tests, including both in-sample and out-
of-sample evaluations, to rigorously identify the model that demonstrates the highest
efficiency. This meticulous approach ensures that we are able to recommend a model that is
most suitable for practical, real-world applications, guaranteeing its reliability and
effectiveness in various situations.
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