
Partitioned Register File Designs for Clustered

Architectures

Yukinori Sato, Ken-ichi Suzuki, Tadao Nakamura
Graduate School of Information Sciences, Tohoku University,

6-6-01, Aramaki Aza Aoba, Aoba-ku, Sendai, 981-8579, Japan
{yukinori,suzuki,nakamura}@archi.is.tohoku.ac.jp

Abstract

The clustered architecture, where the conventional monolithic register
file is partitioned into several smaller register files, is one of the candidates
for the future high performance processor architectures. The aggressive
partitioning can reduce the access time of the register file. On the other
hand, the partitioning makes losses of instructions per clock cycle due
to communication among register files. Not only the degree of parti-
tioning, but the organization of partitioned register files also affects the
access time of register files and the amount of inter-PE communication.
In this paper, we investigate appropriate degrees of partitioning and or-
ganizations of partitioned register files in various 8-way issue clustered
architectures. The results show that the eight single-issue PEs or the
four double-issue PEs with the non-consistent register file organization
can achieve the highest instructions per second and the speedup com-
pared with the non-partitioned organization is 1.59 in the MediaBench
suite and 1.69 in the SPEC2000int suite.

Keywords : clustered architecture, instruction-level parallelism, degree of par-
titioing, partitioned register file organization

1 Introduction

As the register file (RegFile) in modern high-performance processors is enlarged
and multiported to support their wide issue policy, the access time for the
RegFile becomes the critical path for clock cycle time and the energy of the
RegFile accounts for a substantial portion of energy dissipation in processors
[1, 2]. The enlarged and multiported RegFile makes its access time slower and
the slow access time causes performance degradation. Moreover, the huge power
consumption of an enlarged and multiported RegFile will become the biggest
restriction of realizing future high-performance microprocessors[3]. The access
time and energy of a RegFile is dependent on the number of registers and the
number of ports. Reducing the number of registers and ports by means of
partitioning a RegFile is one of the approaches to realize a reasonable RegFile.

Dynamically-scheduled clustered architectures, where the global structures
are partitioned into simple smaller structures and each of them is arranged in
a PE (processing element), will be able to realize a reasonable RegFile[4, 5, 6].

1

yukinori
In Journal of Information, Vol.9, No.1, January, 2006

Here, a PE is also called a cluster in some papers. In clustered architectures, a
conventional single monolithic RegFile is partitioned into several smaller Reg-
Files. The partitioning makes the access to the RegFiles faster because the
number of entries and ports of the partitioned structures can be reduced. On
the other hand, it increases the amount of inter-PE communication among PEs.

It is widely known that performance of clustered architectures depends on
the amount of inter-PE communication to synchronize dependent instructions
and the amount of workload imbalance that hinders parallel execution of instruc-
tions [5, 6]. The number of PEs and the issue width of each PE are important
architectural parameters that balance the workload and communication among
PEs. These architectural parameters also affect the clock cycle time of a proces-
sor and the energy dissipation of a RegFile because they determine the number
of registers and ports.

In clustered architectures, the number of PEs is decided by degree of par-
titioning. The aggressive partitioning, where a single monolithic RegFile is
partitioned into much more PEs, makes the RegFiles smaller and less ported.
However, the aggressively larger number of PEs requires more communication
among PEs. The issue width of each PE decides the number of ports of parti-
tioned RegFiles. The wider issue width of each PE can process much more data
without inter-PE communication in return for the slow multiported RegFiles.
A smaller issue width of each PE can realize smaller and less ported RegFiles.
However, it suffers from restricted ability for parallel processing within a PE,
which induces the workload imbalance or inter-PE communication.

The other factor that determines the effectiveness of the partitioning is the
organization of partitioned RegFiles. There are two organizations of partitioned
RegFiles: multiple coherent RegFiles[7] and non-consistent RegFiles[8]. In the
multiple coherent RegFiles, any register instances are replicated in each PE,
so, every PE can utilize any register instances locally. In the non-consistent
RegFiles, any register instances are not replicated, so, every PE can utilize only
register instances in the local RegFile. The non-consistent RegFile organization
can be realized by a smaller number of registers. However, register instances
must be distributed to PEs properly, in this organization.

In this paper, we compare performance of various 8-way issue configurations
with various degree of partitioning. At the same time, we also evaluate the
effect of organizations of partitioned RegFiles. Finally we present the most
appropriate design direction in terms of the total performance measured by the
number of instructions per second.

The rest of this paper is organized as follows. In section 2, we briefly show
the overview of a baseline clustered architecture and instruction steering scheme.
Then, we discuss the effect of organization of partitioned RegFiles. Section 3
describes the experimental framework, the evaluation methodology and the re-
sults. Section 4 shows some related work. Section 5 concludes this paper.

2 Clustered architecture

2.1 Baseline microarchitecture

The microarchitecture of a clustered architecture is based on that of the ag-
gressive out-of-order issue superscalar processors. Fig. 1 shows the overview

2

steering

P rocessor Front-End

RegFile

FU

…

PE …0 1 X-1

… IQ

PE PE

Inter-PE connection network

Forwarding
network

0 , ... ,Y-1

Figure 1: The overview of the baseline clustered architecture.

COMMITEXREGISSUEMAPIDIF

COMMITEXREG

EXISSUE

(b) Pipeline timing of an inter-PE result communication

(a) Assuming instruction pipeline organization

... ...

... ...REG

inter-PE
conncection
network

inter-PE comm.

PE
m+1

PE
m

Figure 2: The timing of the pipeline.

of the baseline clustered architecture. The processor front-end fetches multiple
instructions at once and decodes them. The decoded instructions are delivered
to the steering logic. The steering logic chooses a PE for the execution of each
instruction. Next, the steered instruction is dispatched to the IQ (issue queue)
that observes whether the operand status of each instruction is ready or not.
When required operands are ready, the instruction is waked up and the corre-
sponding resources of the steered PE are checked. If the resources are available,
the instruction is selected and issued to the PE and executed.

We represent a configuration of clustered architecture as X*Y, where X is the
number of PEs and Y is the issue width in a PE. In this paper, we simulate the
following four configurations as 8-way issue processors: 1*8, 2*4, 4*2 and 8*1.
In the 1*8 configuration, any structures are not partitioned, so it corresponds
to a conventional superscalar design. If the number of PEs is increased, faster
data paths can be realized, however, data processing with the large number of
PEs induces much more communication among PEs.

Fig. 2 (a) shows the pipeline stages assumed in this paper, which are based
on those of Alpha21264 [7]. In MAP stage, instructions are dynamically steered

3

Table 1: The status of operands and its steered PE.

min_waiting

in1

min_waiting

null

in2

in1 / in2

in2

!ready

in1!ready

ready

min_waitingready

min_waitingnull

min_waiting

in1

min_waiting

null

in2

in1

in2

!ready

in1!ready

ready

min_waitingready

min_waitingnull

in1
in2

!ready scheme

The min_waiting indicates that the instruction is steered to the PE

 with minimum waiting instrucitons.

The in1 and in2 indicate that the instruction is steered to the producer

 PE of source operand in1 and in2, respectively.

to appropriate PEs based on an instruction steering scheme and architectural
registers specified by instructions are renamed to physical registers. The register
renaming mechanism we adopted is also based on that of Alpha21264.

In ISSUE stage, instructions in the IQ are checked whether their operands
are ready and their corresponding functional units are available. If the operands
and the functional unit of an instruction is available, the instruction is issued
and the unit is reserved for execution. After the operands are read in REG
stage, the instruction is executed in EX stage in its given latency.

In the case where the instruction uses at least one unready operand, the
instruction must wait until the results of the preceding instructions are provided.
When the preceding dependent instruction is executed in the same PE as the
waiting instruction, the waiting instruction is executed at the next cycle of
the execution of the preceding instruction using a forwarding network. On the
other hand, when the waiting instruction is allocated in a different PE from the
preceding dependent instruction, the result from different PE must be transfered
to the PE where the waiting instruction is allocated. We assume that it takes
2 extra cycles for this inter-PE communication as shown in Fig. 2 (b).

2.2 Baseline steering scheme

We use the !ready (not ready) instruction steering scheme as a baseline. This
scheme steers instructions based on the status of operands and can achieve
higher IPC [10]. In order to prevent the undesirable inter-PE communications,
this scheme steers instructions with at least one unready operand to the same
PE as its dependent instruction. Instruction without any unready operand is
steered to the minimum loaded PE to improve the load balance among PEs. The
status of operands is always monitored to realize the out-of-order execution in
conventional processors. The heuristics for workload balancing is the number of
waiting instructions in each PE because the min waiting heuristics can obtain
better performance than the DCOUNT heuristics[5].

Table 1 shows the relationship between the status of source operands of an
instruction and its steered PE on the !ready scheme. The first column and first
row of each table denote the status of the two source operands of a consumer
instruction, in1 and in2. The status of a source operand is classified as follows:
operand is nothing (null), a dependent operand is unready (!ready), or is ready

4

op s rc1 s rc2 des t

Des t <- src1 op src 2

Architectural registers

Register renaming

Physical registers

Partitioned into PEs

Multip le-coherent RegFiles

Reg
File

PE0 PE1 PE2

result

PE0 PE1 PE20

90

0

90

0

90

0

39

40

79

80

119

resultcopy0 copy1 copy2

Reg
File

Reg
File

Reg
File

Reg
File

Reg
File

instruction

Non-consistent RegFiles

Figure 3: The register mapping process.

(ready). The rest of the table indicates which PE the instruction is steered to
for each operand status. For example, if source operand in1 is ready and in2 is
!ready, then the scheme steers the instruction to the same PE as the operand
in2 is allocated.

In this paper, we assume all the PEs share a single large IQ as shown in
Fig. 1 to isolate the problem of the lack of available IQ entries from our eval-
uation. In the case that we partition the IQ across the PEs, we have to take
into account the utilization of each IQ. When the lack of available IQ entries oc-
curs in a PE, an instruction cannot be steered into the PE, which might cause
performance degradation. However, the workload balancing heuristics of the
number of waiting instructions in each PE try to even up the utilization of each
IQ, so the impact to IPC will be small. The effect of the partitioned IQ will be
evaluated in our future work including considerations for the effect of wakeup
delay on circuit level[4].

2.3 The organization of partitioned RegFiles

Most of current instruction set architectures are based on a single set of regis-
ters. However, the clustered architectures provide the physically partitioned set
of registers in each PE. Therefore, a register mapping mechanism needs to map
the architectural registers into the partitioned physical registers in an effective
manner. Fig. 3 shows the register mapping processes in clustered architectures.
Originally, source and destination operands of an instruction are specified by
architectural registers. To resolve WAR and WAW dependencies, the architec-
tural registers are renamed to the physical registers. There are two partitioned
RegFile organizations to decide the mapping of architectural registers: multiple
coherent register files and non-consistent register files. The biggest difference
between them is whether an architectural register is mapped to multiple physical
registers or one physical register.

In the multiple coherent RegFiles, an architectural register is mapped to all

5

EX

inter-PE comm.

ISSUE... ...

RegFile

PE
m+1

ISSUE REGMAP

PE
m

inter-PE
conncection
network

read_rq
buffer

Figure 4: The pipeline timing of inter-PE register read in the non-consistent
RegFile organizations.

of the partitioned RegFiles, so a register in each partitioned RegFile has the
same register instance. An example of this organization is found in Alpha21264
[7]. The numbers on the left of the RegFiles in Fig. 3 indicate the identifiable
numbers of the registers for register renaming. In the multiple coherent Reg-
Files, each register instance stored in the same position is always replicated.
Therefore, this organization consumes the large number of registers to hold a
copy of the register instance in each partitioned RegFile. The replication is
done by writing all the produced results to the corresponding register of all the
RegFiles, and this requires additional dedicated write ports for each RegFile.

In the non-consistent RegFiles, a register in each RegFile has its own register
instance since a result is written into only one register where the result is pro-
duced [8]. This organization can reduce the total number of registers throughout
the PEs because a register instance is not replicated. Therefore, as illustrated
in Fig. 3, the identifiable numbers of registers are not replicated. Moreover,
the non-consistent RegFiles can be realized only with the ports for the intra-PE
functional units, plus a few ports to handle inter-PE communication.

On the other hand, in the non-consistent RegFile organization, register in-
stances in each RegFile is different from each other, so inter-PE communication
using the interconnection network is required if a PE is found to use non-local
registers . Fig. 4 shows the pipeline timing of an inter-PE register read. We
assume that the remote register read requires two cycles for communication
compared with a single cycle when the operand is stored in the same PE. This
communication delay due to the non-consistent RegFile organization might de-
crease the performance.

Not only the extra delay of register read, but also lack of available free
registers in particular PEs might degrade the performance in the non-consistent
RegFile organizations. This is because the number of available free registers
in a PE is different from the others since the number of in-flight instructions
in a PE is different from the others. When the PE selected by the instruction
steering scheme lacks available free registers, the instruction must be reallocated
to one of the other PEs, and this reallocation induces extra communication delay
compared with the original PE allocation by the steering scheme.

The other difference between the multiple coherent and non-consistent Reg-
Files is the management of committed registers. In the renaming process of
Alpha21264, committed registers are always stored in dedicated registers whose
identifiable numbers are $0-$31. In the multiple coherent RegFile organization,
those dedicated registers are also replicated across the partitioned RegFiles. On
the other hand, in the non-consistent RegFile organization, we assume that the
committed registers are partitioned into PEs and each PE has the same num-
ber of committed registers to avoid converging register pressure on a particular

6

PE 0
PE 1 PE 2 PE 3

222 2

(a) Inter-PE dedicated lines for 4*2

 with the multiple coherent RegFiles

read port

write port

(b) Detail of a PE in the 4*2 with

 the multiple coherent RegFiles

RegFile

bypassing

FU FU

To other PEs From other PEs

Figure 5: The multiple coherent RegFile organization.

PE 0
PE 1 PE 2 PE 3

(b) Inter-PE shared buses for 4*2

 with the non-consistent RegFiles

2 2 2 2
2
2
2
2

(b) Detail of a PE in the 4*2 with

 the non-consistent RegFiles

RegFile

bypassing

FU FUbuffer

Inter-PE buses

read port

write port

Figure 6: The non-consistent RegFile organization.

PE. For example, in an 8 PE configuration, 32 committed registers ($0-$31) are
partitioned as follows: PE0 has $0-$3, PE1 has $4-$7, ... , PE7 has $28-$31.
In addition, in order to accommodate the renaming mechanism to the non-
consistent organization, we prepare each PE its own free register list to handle
the different numbers of available free registers among PEs.

2.4 The inter-PE network of the partitioned RegFiles

Partitioned RegFiles require inter-PE communication using an inter-PE com-
munication network. The required inter-PE communication network is different
depending on the organization of the partitioned RegFiles.

The multiple coherent RegFile organization requires a fully-connected net-
work to deliver all the produced results for all RegFiles. To realize the net-
work, dedicated signal lines and write ports for the result transfer are required.
Fig. 5 (a) illustrates an overview of the inter-PE dedicated lines of the 4*2 with
multiple coherent RegFile configuration. In this case, every PE can produce
up to 2 results, so the required number of write ports for result coherence in a
single PE is 6. Fig. 5 (b) illustrates details of a PE in the 4*2 configuration. In
this case, total requirement for the ports in a PE is 4 reads and 8 writes.

The non-consistent RegFile organization provides shared buses for an inter-
PE communication network as illustrated in Fig. 6 (a). Each shared bus cor-
responds to a write to one PE, and each PE is able to send data to any bus.
There are various configurations for the shared buses unlike the dedicated lines
of the multiple coherent RegFiles. We assume that the inter-PE communication
network is made up of as many buses as the total issue width. Therefore, the

7

Table 2: The number of ports in each configuration

configuration
Multiple-coherent

RegFiles
Non-consistent

1*8 16R+8W 16R+8W
2*4 8R+8W 12R+4W
4*2 4R+8W 6R+2W
8*1 2R+8W 3R+1W

RegFiles

number of buses for a PE is the same number as the issue width in a PE. In
the case of the 4*2 configuration, the total number of buses is eight and each
PE has two buses for write to the PE. We also note that the maximum number
of data transfered using shared buses per clock cycle in the non-consistent Reg-
File organization is the same as that of dedicated lines in the multiple coherent
RegFile organization. This is because the maximum number of transfered data
is set to the total number of the issue width for fair comparison.

Fig. 6 (b) depicts details of a PE in the 4*2 non-consistent RegFile config-
uration. We assume that the number of read ports in a RegFile for inter-PE
network is the same as the issue width in a PE. In the case of the 4*2 config-
uration, up to 2 register instances from a single RegFile are allowed to read in
a clock cycle for the input of the inter-PE network. We assume that when an
operand from a remote PE is ready, the operand is send to the consumer PE
as soon as possible. To support this communication, we assume a small buffer
to save delivered operands from remote PEs and the operands remain in the
buffer until the operand is consumed. We assume the size of the buffer will
be small enough not to affect the operating frequency and the total amount of
hardware cost[15]. Our model of the inter-PE communication network in the
non-consistent RegFiles is similar to the model in [15].

This shared bus network for the non-consistent RegFiles can reduce the total
number of ports in a partitioned RegFile. However, the shared bus network
might cause resource conflicts of read ports or shared buses. In the case of
a conflict, the communication is delayed and the waiting instruction is stalled
until the data arrives.

The number of registers and ports are important parameters that decides the
access speed and energy dissipation of RegFiles. In order to understand the rela-
tionship between the degree of partitioning and the organization of RegFiles, we
summarize these parameters. For the number of registers, there are two metrics
as follows: the number of net registers which excludes replicated registers, and
the number of total physical registers which includes replicated registers. If we
compare the two RegFile organizations with the same number of net registers,
the multiple coherent RegFile organization requires the X times larger number
of physical registers against the non-consistent RegFiles organization, where X
represents the number of PEs.

The number of ports is also different depending on the partitioned RegFile
organization. Table 2 shows the number of required ports for each organization.
For the processing in a PE, we need 2Y read ports and Y write ports, where
Y is the issue width in a PE. The number of ports for inter-PE communication
network is (X-1)Y write ports for multiple coherent RegFiles and Y read ports
for non-consistent RegFiles.

8

Table 3: Main architectural parameters.

256ROB size

64IQ, FQ, LQ, SQ size

128kB, 2wayDcache

128kB, 2wayIcache

8 The number of total issues

Tournament branch predictorBranch predictor

8 instructions per cycleFetch and decode

3 Experiments

3.1 Methodology

We developed a cycle-accurate execution-driven simulator to evaluate the var-
ious configurations of clustered architecture. Baseline simulator is sim-alpha
[11], which is one of the extention versions of SimpleScalar tool set [12]. Sim-
alpha models the detailed microarchitecture of Alpha21264, which is one of the
clustered architectures composed of dual integer PEs (clusters) with multiple
coherent RegFiles.

We modified sim-alpha to model the 8-way clustered architecture with all the
architectural features including the degree of partitioning, the organizations of
partitioned RegFiles and the number of registers per PE. The other architectural
parameters are shown in Table 3. The rest of parameters such as latency of the
caches and that of functional units are following that of Alpha21264.

We modeled the access time of partitioned RegFiles using CACTI-2.0 tool
set [9] at 0.07 µm technology. Basically the model is intended to evaluate cache
system, so we discarded the tag path of the model and set the width of a register
to be 64 bits as depicted in [16].

We select a subset of 4 benchmarks (djpeg, cjpeg, rawdaudio, rawcaudio)
from the MediaBench benchmark suite [13]. This benchmark suite captures the
main features of commercial multimedia applications. Benchmarks which tend
to achieve high instruction-level parallelism have been selected. We also select
a subset of 7 benchmarks (gzip, vpr, gcc, mcf, perlbmk, bzip, twolf) from the
SPEC2000CPU int benchmark suite [14]. The rest of SPEC2000 benchmarks
could not be adapted to the simulation environment used. All the benchmarks
were compiled for the Alpha binary using Compaq’s C compiler v6.5 on Tru64
UNIX V5.1B with -O4 -fast -non shared options. Each program of the Media-
Bench was executed until the completion and 100 million instructions of each
program of the SPEC2000int were executed after forwarding 1 billion instruc-
tions.

3.2 Results

Fig. 7 shows instructions per clock cycle (IPC) for the MediaBench suite. The
specifier following the colon in the legend of figure indicates the organization
of the partitioned RegFiles. The ’MC’ represents the organization with the
multiple coherent RegFiles. The ’non-C’ represents the organization with the

9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 20 24 28 32 40 48 56 64 80 96 112 128 144 160 256

The number of registers per PE

IP
C

8*1:non-C 4*2:non-C 2*4:non-C 1*8

8*1:MC 4*2:MC 2*4:MC

Figure 7: IPC of the MediaBench suite with various configurations.

non-consistent RegFiles. The x-axis represents the number of physical registers
per PE.

The results show that IPC of 1*8 configuration is the highest of all. The
1*8 configuration does not partition any structures, so the 1*8 configuration
can perform ideal IPC without any inter-PE communication losses. We can
observe that the more RegFiles are partitioned, the lower the IPC becomes.
This degradation is caused by inter-PE communication. It is also observed that
IPC is increased when the number of registers per PE is increased in the same
configuration. This is because the large number of registers can prevent IPC
losses due to the lack of available free registers.

The net number of registers, which excludes replicated registers, is different
depending on each partitioned RegFile organization. In the case that the num-
ber of net registers throughout PEs is equal, IPC of the MC organizations are
higher than that of non-C organization. For example, comparing the 128 net
registers case, IPC of the 8*1:MC 128 registers per PE configuration is higher
than that of the 8*1:non-C 16 registers per PE configuration. The IPC losses
of the non-C organization is caused by extra communication delay due to the
inter-PE register read and the lack of available free registers in particular PEs.

It is hard for MC organizations to increase the net number of registers due
to replicated registers. On the other hand, the non-C organization can increase
the net number of registers at less cost. From the results, we can find out that
when the number of register per PE is increased in the non-C organizations,
they can achieve higher IPC than the corresponding MC 128 registers per PE
organizations with the smaller number of total physical registers. Therefore,
we can understand that the non-consistent RegFile organizations exploit the
partitioned resources more effectively because it does not duplicate any register
instances.

In return for the IPC losses due to the partitioning, the aggressive partition-
ing configuration can reduce the number of physical registers and the number of
ports. Reducing the number of physical registers and ports enables faster access
to RegFiles, which allows higher operating frequency of the processors. Fig. 8
shows the operating frequency of each configuration. The number of ports is

10

0.0

1.0

2.0

3.0

4.0

5.0

6.0

16 20 24 28 32 40 48 56 64 80 96 112 128 144 160 256

The number of registers per PE

fr
e
q
u
e
n
c
y
 [
G
H
z
]

8*1:non-C 4*2:non-C 2*4:non-C 1*8

8*1:MC 4*2:MC 2*4:MC

3R1W

6R2W

16R8W

8R8W

12R4W

4R8W

2R8W

Figure 8: The operating frequency of the RegFiles.

0.0

2.0

4.0

6.0

8.0

10.0

16 20 24 28 32 40 48 56 64 80 96 112 128 144 160 256

The number of registers per PE

G
IP
S

8*1:non-C 4*2:non-C 2*4:non-C 1*8

8*1:MC 4*2:MC 2*4:MC

Figure 9: Giga Instructions Per Second of the MediaBench suite.

determined by the degree of partitioning and the organization of partitioned
RegFiles, and the required number of ports is depicted in the figure.

We can understand that a RegFile is partitioned the more, the RegFile can
achieve the higher frequency. This is because the number of ports is decreased
by the partitioning and the smaller number of ports is effective in realizing the
higher frequency. The smaller number of registers also makes RegFile access
faster, however the benefit of the smaller number of registers is less than the
smaller number of ports.

In terms of the organization of RegFiles, the operating frequency of the non-
consistent RegFiles is superior than that of the multiple coherent RegFiles even
in the same degree of partitioning. This is because the non-consistent RegFiles
organization can reduce more ports. It is also observed that we do not partition
any structure at all, the operating frequency becomes a half of the aggressive
partitioning configuration with non-consistent RegFiles.

The increase of the number of PEs due to the aggressive partitioning requires

11

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

8*
1:
no
n-
C
.3
2

4*
2:
no
n-
C
.3
2

2*
4:
no
n-
C
.8
0

1*
8.
11
2

8*
1:
M
C
.1
28

4*
2:
M
C
.1
28

2*
4:
M
C
.1
28

S
p
e
e
d
u
p

IPC IPSfrequency

(a) MediaBench average

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

8*
1:
no
n-
C
.3
2

4*
2:
no
n-
C
.3
2

2*
4:
no
n-
C
.8
0

1*
8.
11
2

8*
1:
M
C
.1
28

4*
2:
M
C
.1
28

2*
4:
M
C
.1
28

S
p
e
e
d
u
p

IPC IPSfrequency

(b) SPEC2000int average

Figure 10: Speedup.

more communication among PEs, which causes the IPC degradation. On the
other hand, the aggressive partitioning makes RegFile access faster and the
faster RegFile allows higher operating frequency of the processor. Therefore,
we introduce instructions per second metrics, which is calculated by multiplying
IPC and operating frequency.

Fig. 9 shows GIPS (Giga Instructions Per Second) for the MediaBench
suite. Here we assume that the operating frequency of a processor is equal to
the operating frequency of the RegFile. From the results, we can understand
that 8*1:non-C and 4*2:non-C configurations achieve higher IPS than any other
configurations.

12

To illustrate the speedup due to the partitioning of RegFiles more clearly,
we compare the peak IPS of each configuration. Fig. 10 shows the speedup
ratio of IPC, operating frequency and IPS relative to the 1*8 configuration. We
select the number of registers that can achieve the peak IPS for each configu-
ration. The number following each configuration name in the figure represents
the number of registers per PE.

The multiple coherent RegFile organizations cannot achieve high IPS due to
the low operating frequency compared to the non-consistent organizations. The
speedup of the configurations with the multiple coherent RegFile organization
is around 10% in the 2*4:MC and 4*2:MC configurations and this is not so high
compared with that of the non-consistent RegFile organizations. The IPC of
8*1:MC configuration is lower than the other multiple coherent RegFile config-
urations, so there is small speedup in 8*1:MC configuration compared with the
baseline configuration.

On the other hand, it is remarkable that the 8*1:non-C configuration achieves
1.59 times higher IPS than the baseline 1*8 configuration in the MediaBench
suite and the 4*2:non-C configuration achieves 1.69 times higher IPS in the
SPEC2000int suite. The reason of these IPS gains is that the non-consistent
RegFile organization overcome the disadvantage of lower IPC using the benefit
of its higher frequency. Therefore, we can summarize that the aggressive parti-
tioning configurations with the non-consistent RegFile organization is the most
efficient design that balances both the inter-PE communication losses and the
faster RegFile access.

4 Related Work

In order to obtain higher performance in dynamically-scheduled clustered ar-
chitectures, there are many proposals for instruction steering schemes and their
comparisons in literature [5, 6, 10]. However, degree of the partitioning and
an organization of the partitioned RegFiles are also the other factors that de-
termine performance of clustered architectures. The trade-off of degree of the
partitioning between the lower IPC and the faster data paths has not been eval-
uated. Zyuban and Kogge evaluate the degree of the partitioning in terms of
energy efficiency[15]. However, they do not discuss the trade-off between the
lower IPC and the faster data paths and they only focused on the non-consistent
RegFile organizations.

Many proposals of Dynamically-scheduled clustered architectures assume
the multiple-coherent RegFile organization [7, 6]. Our work is the first work
in terms of comparison of the multiple-coherent RegFile and non-consistent
RegFile organization. Our model of the non-consistent RegFiles is similar to
the model in [15]. The model in [15] assumes a remote access buffer (RAB) to
feed data to remote PEs. In contrast, our model assumes a buffer to save data
from remote PEs. Intrinsically, these two timing model are the same.

The partitioned RegFile model in [5] inserts copy instructions between de-
pendent instructions dynamically. The required register instances are replicated
across PEs, so this can be seen as partially non-consistent RegFiles. This tim-
ing model of processing dependent instructions is the same as that of our the
non-consistent RegFiles.

The partially non-consistent RegFile organization in [5] does not require the

13

extra buffer for inter-PE communication network. However, this organization
must add the extra write ports to receive data from remote PEs and the more
registers to hold the copied instances. For the non-consistent RegFile orga-
nization, Zyuban et al. mentioned that 6 entries in the remote access buffer
is sufficient to save data for inter-PE communication and this will be small
enough not to degrade the operating frequency[15]. Considering these facts,
we assume using the additional buffer. The comparison between the partially
non-consistent and fully non-consistent RegFiles will be our future work.

Seznec and Rochecouste proposed register Write Specialization and register
Read Specialization for clustered architecture [16]. Based on the multiple co-
herent RegFile organization, they force functional units in a PE to write and
read the specific registers. The register write specialization enables the num-
ber of ports of registers to reduce. The register read specialization can reduce
the number of replicated registers. This RegFile organization is referred as the
multiple coherent write specialization RegFile organization.

Brown and Patt evaluated performance of multiple coherent write specializa-
tion RegFile organization and partially non-consistent RegFile organization[17].
They concluded that organization with the write specialization RegFiles can
achieve about 10% higher IPC than that with the partially non-consistent Reg-
Files. However, they did not vary the number of registers in the partially non-
consistent RegFiles. In this paper, we can find out that if we adjust the number
of registers, the non-consistent RegFile organization can achieve higher IPC
than multiple coherent RegFile organization.

5 Conclusions

In this paper, we have compared performance of various 8-way issue configu-
rations to investigate appropriate degree of partitioning and organizations of
partitioned register files. The partitioning of a single monolithic register file
into several smaller ones makes the register file access time shorter because the
number of entries and ports can be reduced. On the other hand, the parti-
tioning increases the amount of inter-PE communication among PEs and this
increase of communication causes IPC degradation. The organizations of par-
titioned register files also have an impact on performance because the amount
of inter-PE communication, the number of registers and ports differs from each
organization.

We have observed that IPC is decreased as the the number of PEs is in-
creased. This is because the partitioning requires more communication among
PEs. On the other hand, the more aggressive partitioning makes the higher
operating frequency. We also have introduced instructions per second met-
rics to investigate the best design. The results show that the aggressive par-
titioning configurations with the non-consistent register file organization can
achieve the highest instructions per second and the speedup compared with the
non-partitioned configuration is 1.59 in the MediaBench suite and 1.69 in the
SPEC2000int suite.

14

References

[1] Il Park, Michael D. Powell, and T. N. Vijaykumar. Reducing register
ports for higher speed and lower energy. In Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, pp. 171–182,
2002.

[2] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H. Albonesi. Re-
ducing the complexity of the register file in dynamic superscalar processors.
In Proceedings of the 34th annual ACM/IEEE international symposium on
Microarchitecture, pp. 237–248. IEEE Computer Society, 2001.

[3] V. Zyuban and P. Kogge. The energy complexity of register files. In
Proceedings of the 1998 international symposium on Low power electronics
and design, pp. 305–310, 1998.

[4] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In Proceedings of the 24th annual interna-
tional symposium on Computer architecture, pp. 206–218, 1997.

[5] Joan-Manuel Parcerisa and Antonio González. Reducing wire delay penalty
through value prediction. In Proceedings of the 33rd annual international
symposium on Microarchitecture, pp. 317–326, 2000.

[6] Aneesh Aggarwal and Manoj Franklin. An empirical study of the scalability
aspects of instruction distribution algorithms for clustered processors. In
Proceedings of IEEE International Symposium on Performance Analysis of
Systems and Software, pp. 172–179, 2001.

[7] R. E. Kessler. The alpha 21264 microprocessor. IEEE Micro, Vol. 19, No. 2,
pp. 24–36, 1999.

[8] Josep Llosa, Mateo Valero, and Eduard Ayguade. Non-consistent dual
register files to reduce register pressure. In Proceedings of the 1st IEEE
Symposium on High-Performance Computer Architecture, pp. 22–31, 1995.

[9] Glen Reinman and Norman P. Jouppi. CACTI 2.0: An integrated cache
timing and power model. Technical report, WRL Research Report 2000/7,
2000.

[10] Yukinori Sato, Kenichi Suzuki, and Tadao Nakamura. An operand status
based instruction steering scheme for clustered architectures. In Proceedings
of the 2005 International Conference on Computer Design (CDES’05), pp.
168–174, 2005.

[11] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler. Measuring
experimental error in microprocessor simulation. In Proceedings of the 28th
annual international symposium on Computer architecture, pp. 266–277,
2001.

[12] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0.
Compututer Architecture News, Vol. 25, No. 3, pp. 13–25, 1997.

15

[13] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Media-
Bench: a tool for evaluating and synthesizing multimedia and communica-
tons systems. In Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, pp. 330–335, 1997.

[14] John L. Henning. SPEC CPU2000: Measuring CPU Performance in the
new millennium. IEEE Computer, Vol. 33, No. 7, pp. 28–35, 2000.

[15] Victor V. Zyuban and Peter M. Kogge. Inherently lower-power high-
performance superscalar architectures. IEEE Transactions on Computers,
Vol. 50, No. 3, pp. 268–285, 2001.

[16] Andre Seznec, Eric Toullec, and Olivier Rochecouste. Register write spe-
cialization register read specialization: a path to complexity-effective wide-
issue superscalar processors. In Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture, pp. 383–394, 2002.

[17] Mary D. Brown and Yale N. Patt. Demand-only broadcast: Reducing
register file and bypass power in clustered execution cores. In Proceedings of
the First Watson Conference on Interaction between Architecture, Circuits,
and Compilers, 2004.

16

