
Introduction to
Algorithms and Data Structures

7. Data structure (2)
Binary Search Tree and its balancing

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/
1

mailto:uehara@jaist.ac.jp
http://www.jaist.ac.jp/%7Euehara

Review:
• We have three combinations of “data structure”, “what

to do” and “algorithm”.
• “What to do”: E.g., i-th data, search, add/insert/remove.

• Array: access in O(1), search in O(n)
• Array in order: search in O(log n), but add/remove in

O(n)
• Linked list: access in O(n), but add/remove in O(1)
• Hash: easy to add and search
• Binary search tree: dynamic search

Dynamic search and data structure

• Sometimes, we would like to search in
dynamic data, i.e., we add/remove data in the
data set.

• Example: Document management in
university
– New students: add to list
– Alumni: remove from list
– When you get credit: search the list

3

Naïve idea: array or linked list?

• Data in order:
– Search: binary search in O(log n) time
– Add and remove: O(n) time per data

• Data not in order:
– Search and remove: O(n) time per data
– Add: in O(1) time

Imagine: you
have 10000
students, and
you have 300
new students!

4

Better idea: binary search tree
• For every vertex v, we have the following;

– Data in v ≧ any data in a vertex in left subtree
– Data in v ≦ any data in a vertex in right subtree

25

12 29

7 20 42

3 9 15

17

35

32 37

5

Better idea: binary search tree

6

• We construct binary search tree for a given data set;
we learnt it can be updated in O(L) time, where L is the
length of the route from a leaf to the root.

• When data is random:
– Depth of the tree: O(log n)
– Search, add, remove: O(log n) time.

• In the worst case:
– Depth of the tree: n
– When data is given in order,

we have the worst case.
– Search, add, remove: O(n) time…

Today: More binary search tree (BST)

7

1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?

1. Max/min data in BST

• Properties of a BST
– All left descendants have smaller values
– All right descendants have larger values

• Using the properties…
– Minimum: the leftmost lowest descendant from the

root
– Maximum: the rightmost lowest descendant from the

root

• Tips: It is easy to remove the minimum/maximum
node (since it has at most one child)

8

1. Max/min data in BST (Example)
(consider remove them also)

25

12 29

7 20 42

3 9 15

17

35

32 37

9

10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 22 9

1 2 3 4 5 6 7 8 9
10 13 11 15 14 12 18 21 22

We can use an array, instead of linked list!

How about heap?
1. Assign 1 to the root.
2. For a node of number i, assign

2×i to the left child and assign
2×i+1 to the right child.

3. No nodes assigned by the
number greater than n.

4. For each edge, parent stores
data smaller than one in child.

[Review]

・It is easy to obtain the minimum one (at root)
・However, maximum one is not easy in the tree/array

Today: More binary search tree (BST)

11

1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?

We have three ways of enumeration
(general traverse ways of a binary tree)

• Preorder:
Data in the current node left subtree
right subtree

• Inorder:
left subtree Data in the current node
right subtree

• Postorder:
left subtree right subtree Data in the
current node

12※It is easy to enumerate all data in array or linked list

preorder(Node n) {
if (n==null) return;
visit(n); preorder(n.lson); preorder(n.rson);

}

How to traverse binary tree: preorder
Data in node left subtree right subtree

25

12 29

7 20 42

3 9 15

17

35

32 37

25
12
7
3
9

20
15
17
29
42
35
32
37

13

※Depth
first
manner

inorder(Node n) {
if (n==null) return;
inorder(n.lson); visit(n); inorder(n.rson);

}

How to traverse binary tree: inorder
Left subtree data in node right subtree

25

12 29

7 20 42

3 9 15

17

35

32 37

3
7
9

12
15
17
20
25
29
32
35
37
42

14

postorder(Node n) {
if (n==null) return;
postorder(n.lson); postorder(n.rson); visit(n);

}

How to traverse binary tree: postorder
Left subtree right subtree data in node

25

12 29

7 20 42

3 9 15

17

35

32 37

3
9
7

17
15
20
12
32
37
35
42
29
25

15

Example of code
public class I111_08_p22{

public static void Main(){
Node n3 = new Node (3, null, null);
Node n9 = new Node (9, null, null);
Node n7 = new Node (7, n3, n9);
Node n17 = new Node (17, null, null);
Node n15 = new Node (15, null, n17);
Node n20 = new Node (20, n15, null);
Node n12 = new Node (12, n7, n20);
Node n32 = new Node (32, null, null);
Node n37 = new Node (37, null, null);
Node n35 = new Node (35, n32, n37);
Node n42 = new Node (42, n35, null);
Node n29 = new Node (29, null, n42);
Node n25 = new Node (25, n12, n29);

inorder(n25);
}

static void inorder(Node n) {
if (n==null) return;
inorder(n.lson);
visit(n);
inorder(n.rson);

}

static void visit(Node n) {
System.Console.Write(n.data+" ");

}
}

public class Node {
public int data;
public Node lson;
public Node rson;
public Node (int i, Node ls, Node rs) {

data = i;
lson = ls;
rson = rs;

}
}

output

Easy to modify to pre, post

Small exercise

• Make a small binary search tree (around 10 nodes)
• Find the maximum and minimum data
• Remove the root node
• Enumerate data in preorder, inorder, and

postorder
18

21

25

12

145
8

17

Today: More binary search tree (BST)

18

1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?

Efficiency of BST

2
3

5
7

19

• Best case: O(log n)
– Each of n data is kept in BST

of depth log2n

• Worst case: O(n)
– If we put in increasing order→

we have depth n

• “Random order” is also
interesting topic, but we
make it of depth O(log n) in
any case.

11
13

17

2 3

5

7

11

13

17

Today: More binary search tree (BST)

20

1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?

Nice idea:
(Self-)Balanced Binary Search Tree

• There are some algorithms that maintain to take
balance of tree in depth 𝑂𝑂(log𝑛𝑛).
– e.g., AVL tree, 2-3 tree, 2-color tree (red-black tree)

21

Georgy M. Adelson-Velsky
(1922−2014)

Evgenii M. Landis
(1921−1997)

AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]

• Property (or assertion): at each vertex, the
depth of left subtree and right subtree differs
at most 1.

• Example:

22

AVL tree: Insertion of data

• Find a leaf v for a new data x
• Store data x into v (v is not a leaf any more)
• Check the change of balance by insertion of x
• From v to the root, check the balance at each

vertex, and rebalance (rotation) if necessary.
18

21

25

12

145
8

23

We have nothing to do
up to here

AVL tree: Insertion of data
Insert x=4

before after

18

21

25

12

145

8

18

21

25

12

145

84

24

AVL tree: Insertion of data
Insert x=10

before after

18

21

25

12

145

8

18

21

25

12

145

8

10

25

※We also have unbalanced at 12 and 18 with
1:3 and 2:4, resp, but we first handle the deepest point

AVL tree: Insertion of data
Insert x=20

before after

18

21

25

12

145

8

18

21

25

12

145

8

20

26

AVL tree: Insertion of data
Insert x=23

before after

18

21

25

12

145

8

18

21

25

12

145

8 23

27

Today: More binary search tree (BST)

28

1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?

AVL tree: Rebalance by rotations

• If you insert/remove data, the BST can get
unbalanced.

• “Rotate” tree vertices to make the difference
up to 1:
– Rotation LL
– Rotation RR
– Double rotation LR
– Double rotation RL

29

Rebalance of AVL-tree by rotation:
Rotation LL

• Lift up left subtree (yellow) if too deep
we have to transplant right subtree (blue)

30

Now we have
・ balanced
・ not break balance
・ condition of BST

Rebalance of AVL-tree by rotation:
Rotation LL

• Lift up left subtree (yellow) if too deep
we have to transplant right subtree (blue)

31

Now we have
・ balanced
・ not break balance
・ condition of BST

13

31

17

14 19

7

4 8

1 5 9

3

4

1 5

3

13

17

14 19

7

8

9

Okay, let’s
consider
concrete example!

Rebalance of AVL-tree by rotation:
Rotation RR (just mirror image of LL)

• Lift up right subtree (green) if too deep
we have to transplant left subtree (blue)

32

AVL tree: Rebalance by rotation:
Double rotation LR

• When right subtree of left subtree becomes
too deep, lift up the left-right subtree.

33
※Condition is satisfied?
※Why rotation LL does not work?

AVL tree: Rebalance by rotation:
Double rotation LR

• When right subtree of left subtree becomes
too deep, lift up the left-right subtree.

※Condition is satisfied?
※Why rotation LL does not work?

13

17

14 19

6

4 9

1 5 118

7 13

17

14 19

6

4

9

1 5
118

7

(If you apply rotation LL)

35

13

17

14 19

6

4 9

1 5 118

7 13

17

14 19

6

4

1 5
9

118

7※Condition is satisfied?
※Why rotation LL does not work?

AVL tree: Rebalance by rotation:
Double rotation RL (just mirror image of LR)

• When left subtree of right subtree becomes
too deep, lift up the right-left subtree.

36

AVL tree: Example

• Insertion of 8

5

9

7

3

8

5

8

7

3

9

Double
rotation LR

37

AVL tree: Example

• Insertion of 6

5

8

7

3

9

6

5 8

7

3 96

Double
rotation RL

38

AVL tree: Example

• Insertion of 4 (balance is okay)

5 8

7

3 96

4

39

AVL tree: Example

• Deletion of 6

5 8

7

3 96

4

4 8

7

3 95

Double
rotation LR

40

AVL tree: Example

• Insertion of 6 (balance is okay)

4 8

7

3 95

6

41

AVL tree: Example

• Deletion of 8

4 8

7

3 95

6

4 9

7

3 5

6

4

9

7

3

5

6

Double
rotation LR

42

Time complexity of balanced binary
search tree

• Search: 𝑂𝑂(log𝑛𝑛) time
• Insertion/Deletion: 𝑂𝑂(log𝑛𝑛) time

– 𝑂𝑂 log𝑛𝑛 rotations
– Each rotation takes constant time

• In total, on a balanced binary search tree,
every operation can be done in 𝑂𝑂(log𝑛𝑛) time.
(n is the number of data in the tree)

43

	Introduction to �Algorithms and Data Structures��7. Data structure (2)� Binary Search Tree and its balancing�
	Review:
	Dynamic search and data structure
	Naïve idea: array or linked list?
	Better idea: binary search tree
	Better idea: binary search tree
	Today: More binary search tree (BST)
	1. Max/min data in BST
	1. Max/min data in BST (Example)�(consider remove them also)
	How about heap?
	Today: More binary search tree (BST)
	We have three ways of enumeration�(general traverse ways of a binary tree)
	How to traverse binary tree: preorder�Data in node left subtree right subtree
	How to traverse binary tree: inorder�Left subtree data in node right subtree
	How to traverse binary tree: postorder�Left subtree right subtree data in node
	Example of code
	Small exercise
	Today: More binary search tree (BST)
	Efficiency of BST
	Today: More binary search tree (BST)
	Nice idea:�(Self-)Balanced Binary Search Tree
	AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]
	AVL tree: Insertion of data
	AVL tree: Insertion of data�Insert x=4
	AVL tree: Insertion of data�Insert x=10
	AVL tree: Insertion of data�Insert x=20
	AVL tree: Insertion of data�Insert x=23
	Today: More binary search tree (BST)
	AVL tree: Rebalance by rotations
	Rebalance of AVL-tree by rotation:�Rotation LL
	Rebalance of AVL-tree by rotation:�Rotation LL
	Rebalance of AVL-tree by rotation:�Rotation RR (just mirror image of LL)
	AVL tree: Rebalance by rotation:�Double rotation LR
	AVL tree: Rebalance by rotation:�Double rotation LR
	(If you apply rotation LL)
	AVL tree: Rebalance by rotation:�Double rotation RL (just mirror image of LR)
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	AVL tree: Example
	Time complexity of balanced binary search tree

