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Review:
• We have three combinations of “data structure”, “what 

to do” and “algorithm”.
• “What to do”: E.g., i-th data, search, add/insert/remove.

• Array: access in O(1), search in O(n)
• Array in order: search in O(log n), but add/remove in 

O(n)
• Linked list: access in O(n), but add/remove in O(1)
• Hash: easy to add and search
• Binary search tree: dynamic search



Dynamic search and data structure

• Sometimes, we would like to search in 
dynamic data, i.e., we add/remove data in the 
data set.

• Example: Document management in 
university
– New students: add to list
– Alumni: remove from list
– When you get credit: search the list
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Naïve idea: array or linked list?

• Data in order:
– Search: binary search in O(log n) time
– Add and remove: O(n) time per data

• Data not in order:
– Search and remove: O(n) time per data
– Add: in O(1) time

Imagine: you 
have 10000 
students, and 
you have 300 
new students! 
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Better idea: binary search tree
• For every vertex v, we have the following;

– Data in v ≧ any data in a vertex in left subtree
– Data in v ≦ any data in a vertex in right subtree
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Better idea: binary search tree
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• We construct binary search tree for a given data set; 
we learnt it can be updated in O(L) time, where L is the 
length of the route from a leaf to the root.

• When data is random:
– Depth of the tree: O(log n)
– Search, add, remove: O(log n) time. 

• In the worst case:
– Depth of the tree: n
– When data is given in order, 

we have the worst case.
– Search, add, remove: O(n) time…



Today: More binary search tree (BST)
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1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?



1. Max/min data in BST

• Properties of a BST
– All left descendants have smaller values
– All right descendants have larger values

• Using the properties…
– Minimum: the leftmost lowest descendant from the 

root
– Maximum: the rightmost lowest descendant from the 

root

• Tips: It is easy to remove the minimum/maximum 
node (since it has at most one child)
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1. Max/min data in BST (Example)
(consider remove them also)
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10 1

13  2        11 3

15 4    14 5 12 6     18 7

21 8    22 9  

1   2   3   4   5   6   7   8   9
10  13  11  15  14  12  18  21  22

We can use an array, instead of linked list!

How about heap?
1. Assign 1 to the root.
2. For a node of number i, assign 

2×i to the left child and assign 
2×i+1 to the right child.

3. No nodes assigned by the 
number greater than n.

4. For each edge, parent stores 
data smaller than one in child.

[Review]

・It is easy to obtain the minimum one (at root)
・However, maximum one is not easy in the tree/array



Today: More binary search tree (BST)
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1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?



We have three ways of enumeration
(general traverse ways of a binary tree)

• Preorder:
Data in the current node left subtree
right subtree

• Inorder:
left subtree Data in the current node
right subtree

• Postorder:
left subtree right subtree  Data in the 
current node

12※It is easy to enumerate all data in array or linked list



preorder(Node n) {
if (n==null) return;
visit(n); preorder(n.lson); preorder(n.rson);

}

How to traverse binary tree: preorder
Data in node left subtree right subtree
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inorder(Node n) {
if (n==null) return;
inorder(n.lson); visit(n); inorder(n.rson);

}

How to traverse binary tree: inorder
Left subtree data in node right subtree 
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postorder(Node n) {
if (n==null) return;
postorder(n.lson); postorder(n.rson); visit(n);

}

How to traverse binary tree: postorder
Left subtree right subtree  data in node
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Example of code
public class I111_08_p22{

public static void Main(){
Node n3 = new Node (3, null, null);
Node n9 = new Node (9, null, null);
Node n7 = new Node (7, n3, n9);
Node n17 = new Node (17, null, null);
Node n15 = new Node (15, null, n17); 
Node n20 = new Node (20, n15, null);
Node n12 = new Node (12, n7, n20);
Node n32 = new Node (32, null, null); 
Node n37 = new Node (37, null, null); 
Node n35 = new Node (35, n32, n37);
Node n42 = new Node (42, n35, null);
Node n29 = new Node (29, null, n42); 
Node n25 = new Node (25, n12, n29);

inorder(n25);
}

static void inorder(Node n) {
if (n==null) return;
inorder(n.lson);
visit(n);
inorder(n.rson);

}

static void visit(Node n) {
System.Console.Write(n.data+" ");

}
}

public class Node {
public int data;
public Node lson;
public Node rson;
public Node (int i, Node ls, Node rs) {

data = i;
lson = ls;
rson = rs;

}
}

output

Easy to modify to pre, post



Small exercise

• Make a small binary search tree (around 10 nodes)
• Find the maximum and minimum data
• Remove the root node
• Enumerate data in preorder, inorder, and 

postorder
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Today: More binary search tree (BST)
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1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?



Efficiency of BST
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• Best case: O(log n)
– Each of n data is kept in BST

of depth log2n

• Worst case: O(n)
– If we put in increasing order→

we have depth n

• “Random order” is also 
interesting topic, but we 
make it of depth O(log n) in 
any case.
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Today: More binary search tree (BST)
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1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?



Nice idea:
(Self-)Balanced Binary Search Tree

• There are some algorithms that maintain to take 
balance of tree in depth 𝑂𝑂(log𝑛𝑛).
– e.g., AVL tree, 2-3 tree, 2-color tree (red-black tree)
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AVL tree [G.M. Adelson-Velskii and E.M. Landis ‘62]

• Property (or assertion): at each vertex, the 
depth of left subtree and right subtree differs 
at most 1.

• Example: 
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AVL tree: Insertion of data

• Find a leaf v for a new data x
• Store data x into v (v is not a leaf any more)
• Check the change of balance by insertion of x
• From v to the root, check the balance at each 

vertex, and rebalance (rotation) if necessary.
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We have nothing to do
up to here



AVL tree: Insertion of data
Insert x=4

before after
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AVL tree: Insertion of data
Insert x=10

before after
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※We also have unbalanced at 12 and 18 with
1:3 and 2:4, resp, but we first handle the deepest point



AVL tree: Insertion of data
Insert x=20

before after
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AVL tree: Insertion of data
Insert x=23

before after

18

21

25

12

145

8

18

21

25

12

145

8 23

27



Today: More binary search tree (BST)
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1. Get maximum/minimum data (⇔ heap)
2. Enumerate all data in the tree （⇔ array）
3. “Good” and “bad” structure?
4. How can we fix bad to good?



AVL tree: Rebalance by rotations

• If you insert/remove data, the BST can get 
unbalanced.

• “Rotate” tree vertices to make the difference 
up to 1:
– Rotation LL
– Rotation RR
– Double rotation LR
– Double rotation RL
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Rebalance of AVL-tree by rotation:
Rotation LL

• Lift up left subtree (yellow) if too deep
we have to transplant right subtree (blue)

30

Now we have
・ balanced 
・ not break balance
・ condition of BST



Rebalance of AVL-tree by rotation:
Rotation LL

• Lift up left subtree (yellow) if too deep
we have to transplant right subtree (blue)
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Now we have
・ balanced 
・ not break balance
・ condition of BST
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Okay, let’s
consider 
concrete example!



Rebalance of AVL-tree by rotation:
Rotation RR (just mirror image of LL)

• Lift up right subtree (green) if too deep
we have to transplant left subtree (blue)
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AVL tree: Rebalance by rotation:
Double rotation LR

• When right subtree of left subtree becomes 
too deep, lift up the left-right subtree.

33
※Condition is satisfied?
※Why rotation LL does not work?



AVL tree: Rebalance by rotation:
Double rotation LR

• When right subtree of left subtree becomes 
too deep, lift up the left-right subtree.

※Condition is satisfied?
※Why rotation LL does not work?
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(If you apply rotation LL)
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AVL tree: Rebalance by rotation:
Double rotation RL (just mirror image of LR)

• When left subtree of right subtree becomes 
too deep, lift up the right-left subtree.
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AVL tree: Example

• Insertion of 8

5

9

7

3

8

5

8

7

3

9

Double 
rotation LR

37



AVL tree: Example

• Insertion of 6
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AVL tree: Example

• Insertion of 4 (balance is okay)
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AVL tree: Example

• Deletion of 6
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AVL tree: Example

• Insertion of 6 (balance is okay)
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AVL tree: Example

• Deletion of 8

4 8

7

3 95

6

4 9

7

3 5

6

4

9

7

3

5

6

Double 
rotation LR
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Time complexity of balanced binary 
search tree

• Search: 𝑂𝑂(log𝑛𝑛) time
• Insertion/Deletion: 𝑂𝑂(log𝑛𝑛) time

– 𝑂𝑂 log𝑛𝑛 rotations
– Each rotation takes constant time 

• In total, on a balanced binary search tree, 
every operation can be done in 𝑂𝑂(log𝑛𝑛) time.
(n is the number of data in the tree)
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