Introduction to
 Algorithms and Data Structures

4. Searching (2) Block search

Professor Ryuhei Uehara,

School of Information Science, JAIST, Japan. uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

Search Problem

- Problem: S is a given set of data. For any given data x, determine efficiently if S contains x or not.
- Efficiency: Estimate the time complexity by $n=$ $|S|$, the size of the set S
- In this problem, "checking every data in S " is enough, and this gives us an upper bound $O(n)$ in the worst case.

Roughly, "the running time is proportional to n."

Data structure 2

Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- This is something like dictionary and address book...
Q: Do you use sequential search algorithm when you check dictionary?

Drastic Improvement from O(n)

Algorithm 2: m-block method

Idea off m-block method

(0) Divide the array into m blocks $B_{0}, B_{1}, \ldots, B_{m-1}$
(1) Check the biggest item in each block, and find the block B_{j} that can contain x
(2) Perform sequential search in B_{j}

Algorithm 2: m-block method

Idea of m-block method

(0) Divide the array into m blocks $B_{0}, B_{1}, \ldots, B_{m-1}$
(1) Check the biggest item in each block, and find the block B_{j} that can contain x
(2) Perform sequential search in B_{i}

Simple implementation:
divide into the blocks of same size except the last one.

- Each block has length k , where $\mathrm{k}=\left\ulcorner\mathrm{n} / \mathrm{m}^{\top}\right.$
- Block B_{j} has items from s[jk] to $s[(j+1) k-1]$: $B_{j}=[j k,(j+1) k-1]$

Algorithm 2: m-block method

Idea of m-block method
 (0) Divide the array into m blocks $B_{0}, B_{1}, \ldots, B_{m-1}$
 (1) Check the biggest item in each block, and find the block B_{j} that can contain x (2) Perform sequential search in B_{i}

$$
\begin{aligned}
& j=0 ; \quad \quad j=0, \ldots, m-2, \quad m-1 \text { is "leftover" } \\
& \text { while }(j<=m-2) \\
& \quad \text { if } x<=s[(j+1) * k-1] \text { then exit from loop } \\
& \quad \text { else } j=j+1 ; \quad \text { The maximum index of } B_{j}
\end{aligned}
$$

If the program exits from the loop, the variable jindicates the index of the block, and j indicates the last one otherwise.

Algorithm 2: m-block method

Idea off m-block method
 (0) Divide the array into m blocks $B_{0}, B_{1}, \ldots, B_{m-1}$
 (1) Check the biggest item in each block, and find the block B_{j} that can contain x
 (2) Perform sequential search in B_{j}

$\mathbf{i}=j^{*} k ; \quad t=\min \{(j+1) * k-1, \quad n-1\} ;$ Note that we cannot use while($\mathrm{i}<\mathrm{t}$) extra space between block
if $x<=s[i]$ then exit from the loop;
else $i=i+1$; //next item in the block if $x==s[i]$ then return i and halt; else return -1 and halt.

Example and time complexity

- \# of comparisons \leqq \# of blocks + length of block $=m+n / m$
- What the value of m that minimize $m+n / m$?
- Let $f(m)=m+n / m$, and take the differential for m
- $\mathrm{f}^{\prime}(\mathrm{m})=1-\mathrm{n} / \mathrm{m}^{2}=0 \rightarrow \mathrm{~m}=\mathrm{Vn}$
- When $m=\vee n$, \# of comparisons $\leqq V n+n / V n=2 \mathrm{Vn}$
- Time complexity: O(Vn)

5 min. ex.

Assume $\mathrm{n}=100$.
Find "average" and "worst" cases for $m=10, m=2$, and $m=50$

For example, when $\mathrm{n}=1000000$,
Linear search takes $n / 2=500000$ comparisons, but Block search takes $\mathrm{V} 1000000=1000$ comparisons!!

Example: Real code of m block method

```
public class i111_03_p27{
    public static void Main(){
        int[] data = new int[]{3,9,12,25,29,33,37,65,87};
        ... the same as p7 ... }
```

 static int find(int \(x\), int \(n\), int[] s) \{
 int \(\mathrm{m}=3\);
 int \(k=(n-1) / m+1\);
 int \(j=0\);
 while (j<=m-2) \{
 System.Console.Write(((j+1)*k-1)+" ");
 if (x<=s[(j+1)*k-1]) break;
 j++;
 \}
 int \(i=j * k ;\)
 int \(\mathrm{t}=\) System.Math.Min((j+1)*k-1, \(\mathrm{n}-1)\);
 while(i<t) \{
 System.Console.Write(i+" ");
 if (x<=s[i]) break;
 i++;
 \}
 if (\(\mathrm{X}==\mathrm{s}[\mathrm{i}]\)) return i ;
 return -1;
 \}

Discussion of m block method

- Lengths of blocks should be the same?
(Observation)
\# of comparisons = \# of searched blocks + \# of comparisons in the block

When you find former block, you can use more time in the block \rightarrow It is better to decrease the length of blocks

- For example, we set $\left|B_{i+1}\right|=\left|B_{i}\right|-1$
-Make "index" + "length of a block" constant

Can we do better than $\mathrm{O}(\mathrm{Vn})$?

Algorithm 3: Double m-block method

 In the m-block method, we use sequential search in each block.\Rightarrow We can use m-block method again in the block!!

Idea of double m-block method
For example, if the number of data is 27,

- Linear search requires 27 in the worst case
- 3 -block method requires at most $3+9$
- Double 3-block method needs at most $3+3+3$

Algorithm 3: Double m-block method

 In the m-block method, we use sequential search in each block.\longmapsto We can use m-block method again in the block!!
Recursive call: basic and strong idea

Idea of double m-block method
Why we stop only twice? We can more!!
Divide search area into m blocks, and repeat the same process for the block that contains x, and repeat again and again up to the block has length at most some constant N

Example:

find 20 ($x=20$) for block size 3

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s | 4 | 6 | 7 | 9 | 11 | 14 | 15 | 17 | 18 | 20 | 23 | 24 | 26 | 27 | 29 | 30 | 32 |

【I don't ask you to compute it by yourself...】

Analysis of time complexity

- Length of search space

$$
n \rightarrow\left\lceil\frac{n}{m}\right\rceil \rightarrow\left\lceil\frac{\left[\frac{n}{m}\right]}{m}\right\rceil \rightarrow\left\lceil\frac{\left\lceil\frac{\left\lceil\frac{m}{m}\right]}{m}\right\rceil}{m}\right\rceil \rightarrow \cdots
$$

- Let n_{i} be the length after the i-th call

$$
\begin{aligned}
n_{1} & =\left\lceil\frac{n}{m}\right\rceil \leq \frac{n}{m}+1 \\
n_{2} & =\left\lceil\frac{n_{1}}{m}\right\rceil \leq \frac{n}{m^{2}}+\frac{1}{m}+1 \\
& \ldots \\
n_{i} & \leq \frac{n}{m^{i}}+\sum_{j=0}^{i-1} \frac{1}{m^{j}} \leq \frac{n}{m^{i}}+2
\end{aligned}
$$

【I don't ask you to compute it by yourself...】

Analysis of time complexity

- The length n_{i} after the i-th recursive call:

$$
n_{i} \leqq n / m^{i}+2
$$

- How many recursive calls made? $n_{i} \leq \operatorname{Lmin} \Longleftarrow \operatorname{Lmin} \geq \frac{n}{m^{i}}+2 \Longleftrightarrow \mathfrak{i} \geq \log _{m} \frac{n}{\operatorname{Lmin}-2}$
- Each recursive call make at most m-1 comparisons, so the total number of comparisons is $\leq(m-1) \log _{m} \frac{n}{\operatorname{Lmin}-2}+\operatorname{Lmin}$
- The time complexity is $\mathrm{O}(\log n)$

【I don't ask you to compute it by yourself...】

Analysis of time complexity: The best value of m

- $T(n, m)=(m-1) \log _{m} \frac{n}{L m i n-2}+L \min$

$$
=\frac{m-1}{\log _{2} m} \log _{2} \frac{n}{\operatorname{Lmin}-2}+\operatorname{Lmin}
$$

- To make $T(n, m)$ the minimum, smaller m is better because $m-1$ grows faster than $\log _{2} m$ (which will be checked in the big-O notation).
- Therefore, $\mathrm{m}=2$ is the optimal

[Summary]

- For unorganized data, we have to use $O(n)$ time.
- If data are sorted in increasing order,
- We can exit from the loop when we find the position of x
- Improved to $\mathrm{O}(\mathrm{Vn})$ with m -block method with $\mathrm{m}=\mathrm{Vn}$
- Improved to $\mathrm{O}(\log n)$ with doubly m-block method with $m=2$
- Honestly, in recent programming environment, you do not need to make such a search by yourself.
- Usually, we use a function indexOf(). However, it is very important that you should know that
- "indexOf is heavy" for unorganized data
- "indexOf is light" for SortedList

