
Introduction to
Algorithms and Data Structures

0. Introduction to Introduction to
Algorithms and Data Structures

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/
1

mailto:uehara@jaist.ac.jp
http://www.jaist.ac.jp/%7Euehara

Summary
Goal: To understand the meaning and importance
of algorithms.

2

A formal procedure for solving a problem is called an
algorithm and a way of storing data in a computer is
called a data structure. There may be a number of
combinations of algorithms and data structures for a
problem, in general. It is important to evaluate them by
computation time and space requirement to choose
the best combination. In this lecture, a general but
basic scheme for algorithm design through validation of
the correctness of algorithms and investigation of
improvement of algorithm efficiency is explained.

References

• Textbooks
– “First Course in Algorithms through

Puzzles,” Ryuhei Uehara, 2019, Springer.

– “Introduction to Algorithms, 3rd ed.”
Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, Clifford Stein,
2010, MIT Press.

We do not necessarily follow the
textbooks,,,

3

Evaluations

• Viewpoint of evaluation：
– Comprehension of theory and implementation of

algorithms and data structures.

• Evaluation method：
– Reports

• I will ask small reports each day.
• I will prepare big report problems, which will be

distributed on January 9.
• Summary of a lecture on January 10.
• Submit your report to Prof. Wint Thida Zaw

(wintthidazaw@uit.edu.mm)
4

Schedule of Lectures (1)

5

January 7: 10:00-12:00 and 13:00-15:00
0. Intruduction to Introduction to Algorithms
1. Foundation of Algorithms (1): Basic models
2. Foundation of Algorithms (2): Simple Basic Algorithms
3. Searching (1): Sequential Search and its analysis
4. Searching (2) Block Search

January 8: 10:00-12:00 and 13:00-15:00
5. Searching (3) : Binary Search and Hash method
6. Data Structure (1): Stack, Queue, and Heap
7. Data Structure (2): Binary Search Tree and (its balancing)
8. Sorting (1): Bubble sort, Insertion sort, and Heap sort

January 9: 10:00-12:00 and 13:00-15:00
9. Sorting (2): Merge Sort, Quick sort, complexity of sort algorithms, and
counting sort
10.Data Structure (4): Data structures for graphs
11.Graph Algorithms: Breadth-first search and depth-first search
12.Advanced Algorithm: Dynamic Programming

January 10: Special lectures on recent algorithms by the following professors

http://www.jaist.ac.jp/%7Euehara/PreWALCOM2020/

Schedule of Lectures (2)

6

January 10: Special lectures on recent algorithms by the following professors
– Spanning trees and Cotrees in Digraphs

• Prof. Muhammad Kaykobad, Bangladesh University of Engineering and
Technology

– Graph Drawing
• Prof. Md. Saidur Rahman, Bangladesh University of Engineering and

Technology
– Approximation Algorithms using ILP

• Prof. Subhas Nandy, Indian Statistical Institute
– Dispersion Problems

• Prof. Shin-ichi Nakano, Gunma University
– Computational Origami

• Prof. Ryuhei Uehara, Japan Advanced Institute of Science and
Technology

A survey of some talk(s) you prefer will be a part of the report.

http://www.jaist.ac.jp/%7Euehara/PreWALCOM2020/

Requirements
• Lectures are given in English
• You can ask/answer in English (or Japanese :-)

• Note that “algorithm” and “programming” are different.
“programming” is implementation of algorithm.

• We do not assume any specific language, but we use C as an
example.

• You can use any programming language such as c, C++, Java,
Delphi,,,, perl, ruby, python, basic… in your reports. (You can
also give in pseudo-code or English, if it is readable enough.)

7

Introduction to
Algorithms and Data Structures

1. Foundation of Algorithms (1)
Basic Programming Models

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/
8

mailto:uehara@jaist.ac.jp
http://www.jaist.ac.jp/%7Euehara

What’s an algorithm?

• What’s a good algorithm?
– It outputs a correct answer for any input
– It outputs an answer in reasonable cost

• polynomial time of input length
• polynomial space of input length

• What’s a bad algorithm?
– It takes a loooong time for some input
– It uses a huuuge memory for some input
– (There exists unsolvable problems by any program)

9

Algorithm = Description of a method of
solving a problem using computer

Models of “computation”

• Efficiency of algorithms may change according to
computation model
– What are “basic operations”?
– What kind of data can it store?

• Natural numbers, real numbers (?), images, musics…?
• There are some standard models

– Turing machine: That Turing innovated. Base of all
computation models.

– RAM model: Standard model for algorithm theory.
– We may use models based on GPU and/or quantum

computation in near future…
10

How can we evaluate time and space?
→ First of all, how do computers work?

Turing Machine Model

• Simple theoretical model
• Any computable problem is also solvable by a Turing

machine
• It is so simple that programming is very tedious

– No mathematical operations including +, -, ×, ÷
– It is hard to consider “essence” of algorithms 11

Finite
Control

MotorRead/write
Head

Memory tape

RAM Model
(Random Access Memory)

• It consists Memory and CPU (Central Processing Unit)
– We do not mind Input/Output

• It is essentially the same as your computer
• CPU can access any address randomly (not sequentially) in a unit cycle
• Programming language C is a system that shows you this structure

implicitly (like arrays and pointers)
12

In your computer;
Address bits ≒ Data bits = k
The number of words ≦ 2k

Address Data

Finite control

Program counter: PC
Some registers

word

When we design an
algorithm, we suppose

memory is so huge that we
have no overflow.

Programming Language

• Compiler translates any “readable” program (for
human) to an executable file in machine language
(for the CPU)

• E.g. Programming language C; It is okay if you
know…
1. variable
2. array
3. pointer
4. control statement (e.g., if, while)
5. recursive call

13

Basic of C: Hello World
• We use C language, but the other languages (C++, C#,

Java, etc.) are basically similar
• We give very rough basic programming
• Output “Hello World” on display

14

#include <stdio.h> /*use printf*/

main(){
printf(“Hello World”);

}

Semi-colon after
a statement

statement

★ In C#, use System.Out.WriteLine instead of printf.

Basic of C: Arithmetic operations

• Basic operations: +, -, *, /, %

– Except %, the operations can be used for
integers (int, etc.) and real numbers (float,
double, etc.)

15

Exp. Meaning
3+4 Add 3 and 4
3-1 Subtract 1 from 3
3*3 Multiply 3 and 3
4/2 Divide 4 by 2
3%2 Reminder by dividing 3 by 2

Basic of C: Notes for arithmetic ops.

• (int/int) is rounded (by cutting off)
– Ex: 1/3 is 0, whereas 1.0/3 is 0.3333…

• double av = (int)sum/(int)num (Fail)
• No comma for delimiter

– Ex: 10,000 is not okay. Write as 10000.
• We use () to control ordering:

– We cannot use {} or []
– Ex: {(3+4)*3+4}*6 is not correct. Write as
((3+4)*3+4)*6

• No power operation (we can use ** in some
languages)

16

Basic of C: Variable

• Variable: It is a memory cell, that indicates the “place”
to memory a result of computation

• Rules for naming
– Start with alphabet (UPPER, lower letters, and _)
– From the second letter, you can use alphabets and

numbers
• Not any other

– Upper and lower letters are different
• FF, ff, fF, and Ff are all different names

– Not reserved words in C (e.g., main, include, return)

– Good: x, orz, T_T, IE9, projectX, ff4, y2k, JAIST
– Bad: 7th, uehara@jaist, ac.jp, tel#

17

Basic of C: Assignment statement
• a=5

– Store the value 5 to the place named by a in memory
• a=b+5

– Store value of “value stored at the place named by b (or
value of the variable b) plus 5” to the place named by a

• a=a+1

– Store value of “the value of variable a plus 1” to the
place named by a 18

a
Memory cell

5

…
a
b 3

8 (The value of b)＋5

a 8
9

(value of variable a)＋1 = 8+1

“=“ is not “equal” in the
sense of mathematics

Basic of C: Declaration of variable

• You have to declare variables beforehand (in C
language)

19

main(){
int a,b;
a = 5; b = 3;
printf(“a+b=%d”,a+b);

}

main(){
a = 5;
printf(“%d”,a);

}

Good It is not good!Variables a and
b in integer

Bad

Note: Recent language (like python) does not require
to declare beforehand. The system guesses and makes
simpler, but sometimes causes bugs…

Basic of C: Mathematical functions

• Source code: include the following header file
#include <math.h>

• Compile: Option -lm is required
– gcc main.c –lm

20

Square
root

Power

Logarithm

Logarithm

Exponential

function Math．symbol type Parameter
type

★ Write a = Math.sqrt(b) in C#

Basic of C: Control statements
if statement – conditional branch (1/2)
• Grammar

– Ex: Output EVEN if n is even, and ODD if it is odd.

21

if (condition) state 1;
else state 2;

conditi
on

state 1 state 2

next statement

true

false

If condition is true, perform
statement 1, and perform
statement 2 if it is false

if(n%2==0) printf(“EVEN”);
else printf(“ODD”);

We use “==“ to check
equality in C.

Basic of C: Control statements
if statement – conditional branch (2/2)
• else part can be omitted

22

if(condition) state 1; conditi
on

state 1

next statement

true

false

If condition is true, perform statement 1,
and perform nothing if it is false

What happens??:
if(condition) state 1; state 2;

Write as follows:
if(condition) {

state 1;
state 2;

}

Basic of C: Representations of
conditions (1/2)

symbol meaning example meaning of example
== equal n == 2 n is equal to 2
!= not equal n != 0 n is not equal to 0
> greater than n > 3 n is greater than 3

>= g.t. or equal n >= 3 n is g.t. or equal to 3
< less than n < 0.01 n is less than 0.01

<= l.t. or equal n <= 0.01 n is l.t. or equal to 0.01
&& and 0 < n && n <= 10 n is greater than 0 and

less than or equal to 10
|| or n < 0 || 0 < n n is less than 0 or

greater than 0
! not !(n < 0.01) n is not less than 0.0123

Basic of C: Representations of
conditions (2/2)

• You cannot compare 3 or more items
– 0<x<5  0 < x && x < 5
– a==b==c  a == b && b == c

• Example: Check of leap year
– Dividable by 400, or
– Not dividable by 100 but dividable by 4

24

year%400==0 || (year%100!=0 && year%4==0)

Basic of C: Control statements
for loop – repeating (1/4)

• Grammar

• It runs as follows:
A) Execute eq. 1
B) If eq.2 is true, step C,

and step D if false
C) Perform loop body and

eq. 3, jump to B
D) Go to next statement

25

for(eq.1;eq.2;eq.3){
loop body

}

Eq. 2

Loop body Next
statement

true

false

Eq. 3

Eq. 1

At a glance, it seems to be complex,
but we have several standard patterns.

Basic of C: Control statements
for loop – repeating (2/4)

Example: Output the sum from 1 to n

26

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+i;

}
printf(“1+…+%d=%d”,n,sum);

In C,
you can write i++
instead of i=i+1, and

you can write
sum+=i instead of
sum=sum+i

★ You may write as System.Console.WriteLine (“1+…+”+n+”=“+sum) in C#

Basic of C: Control statements
for loop – repeating (3/4)

Example: Output the sum from 1 to n

27

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+i*i;

}

Basic of C: Control statements
for loop – repeating (4/4)

• Ex: Compute

• Why is this correct?
– Because;

28

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=2n-1;i=i+2){

sum=sum+i*i;
} i indicates 2j-1

Basic of C: Control statements
for loop – repeating (4/4) suppl.

• Ex: Compute

• Of course, you can do in this way.

29

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){

sum=sum+(2*i-1)*(2*i-1);
}

Basic of C: Control statements
while loop & do-while loop (1/2)

• Grammar

30

while(condition){
loop body

}

do{
loop body

}while(condition)

conditi
on

Loop body Next
statement

true

false

conditi
on

Loop body

Next statement

true

false

Basic of C: Control statements
while loop & do-while loop (2/2)

Ex: Compute GCD(a,b) of two integers a and b

31

int a,b,r;
a=/*some value*/;
b=/*some value*/;
do{

r = a % b;
a = b; b = r;

}while(r!=0);
printf(“G.C.D.=%d”,a);

This method (algorithm) is known as
“Euclidean mutual division method”,
which is known as the oldest algorithm.

a b r=a%b
1848 630 588
630 588 42
588 42 0
42 0 0

Ex: a=1848, b=630

Basic of C: Array (1/2)
• What is array?

Data structure that aligns many data in the
same type (int, float, etc.) sequential in
memory

• Ex: int data[3]
– 3 consecutive memory cells are

kept as name “data”, in which
each cell stores an integer.

32

…
…

…
…

data
0
1
2

int data[3];
data[0]=1;
data[2]=2;
data[1]=3;

1

2
3

Not only “values”
in recent language.

★ In C#, int[] data = new int[3];

Basic of C: Array (2/2)
Get the maximum

• Ex: compute the maximum value in integer
data[100]

33

int data[100];
int i,max;
/*data is initialized somehow*/
max=0;
for(i=0;i<100;i=i+1){
if(max<data[i]) max=data[i];

}
printf(“maximum data = %d”,max);

Q: Is this program correct?

Wrong!

Basic of C: Array (2/2)
Get the maximum

• Ex: compute the maximum value in integer
data[100]

34

int data[100];
int i,max;
/*data is initialized somehow*/
max=0;
for(i=0;i<100;i=i+1){
if(max<data[i]) max=data[i];

}
printf(“maximum data = %d”,max);

Q: Is this program correct?

Wrong!

When all data is
negative, it outputs 0 as
the maximum!

Basic of C: Array (2/2)
Get the maximum

• Ex: compute the maximum value in integer
data[100] – make it correct

35

int data[100];
int i,max;
/*data is initialized somehow*/
max=data[0];
for(i=1;i<100;i=i+1){

if(max<data[i]) max=data[i];
}
printf(“maximum data = %d”,max);

The value of max is
always in data

10 minutes report

• What does the following function compute?
– Find the outputs of collatz(5) and collatz(7)

36

collatz(unsigned int n) {
print(n); // output n
if (n == 1) return;
if (n%2==0) collatz(n/2);
else collatz(3n+1);

}

Function calls itself
recursively with
different parameters

1 day report (1/2)
• Definition of ExOR + :

– 0 + 0=0, 0 + 1=1, 1 + 0=1, 1 + 1=0

• For integers in binary system, we apply ExOR
bitwise; for example,
– 1010 + 710 = 10102 + 1112 = 11012 = 1310

1. Compute the following
1. 810 + 310

2. 1510 + 710

37

“Exclusive OR”
operation

1 day report (2/2)
2. What does this function S(x,y) do?

38

S(int x, y) {
x=x + y;
y=x + y;
x=x + y;

}

Hint: Try computing
(x=8, y=3),

(x=15, y=7),
(x=1, y=128),
and so on…

Submit the report on
Wednesday, 10:00am.

	Introduction to �Algorithms and Data Structures��0. Introduction to Introduction to Algorithms and Data Structures
	Summary
	References
	Evaluations
	Schedule of Lectures (1)
	Schedule of Lectures (2)
	Requirements
	Introduction to �Algorithms and Data Structures��1. Foundation of Algorithms (1)�Basic Programming Models
	What’s an algorithm?
	Models of “computation”
	Turing Machine Model
	RAM Model�(Random Access Memory)
	Programming Language
	Basic of C: Hello World
	Basic of C: Arithmetic operations
	Basic of C: Notes for arithmetic ops.
	Basic of C: Variable
	Basic of C: Assignment statement
	Basic of C: Declaration of variable
	Basic of C: Mathematical functions
	Basic of C: Control statements�if statement – conditional branch (1/2)
	Basic of C: Control statements�if statement – conditional branch (2/2)
	Basic of C: Representations of conditions (1/2)
	Basic of C: Representations of conditions (2/2)
	Basic of C: Control statements�for loop – repeating (1/4)
	Basic of C: Control statements�for loop – repeating (2/4)
	Basic of C: Control statements�for loop – repeating (3/4)
	Basic of C: Control statements�for loop – repeating (4/4)
	Basic of C: Control statements�for loop – repeating (4/4) suppl.
	Basic of C: Control statements �while loop & do-while loop (1/2)
	Basic of C: Control statements �while loop & do-while loop (2/2)
	Basic of C: Array (1/2)
	Basic of C: Array (2/2)�Get the maximum
	Basic of C: Array (2/2)�Get the maximum
	Basic of C: Array (2/2)�Get the maximum
	10 minutes report
	1 day report (1/2)
	1 day report (2/2)

