Introduction to
Algorithms and Data Structures

0. Introduction to Introduction to
Algorithms and Data Structures

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/

mailto:uehara@jaist.ac.jp
http://www.jaist.ac.jp/%7Euehara

Summary

Goal: To understand the meaning and importance
of algorithms.

A formal procedure for solving a problem is called an
algorithm and a way of storing data in a computer is
called a data structure. There may be a number of
combinations of algorithms and data structures for a
problem, in general. It is important to evaluate them by
computation time and space requirement to choose
the best combination. In this lecture, a general but
basic scheme for algorithm design through validation of
the correctness of algorithms and investigation of
improvement of algorithm efficiency is explained.

References

Ryuhei Uehara
First Course

* Textbooks
— “First Course in Algorithms through Through Purses

Fa

Puzzles,” Ryuhei Uehara, 2019, Springer. w-

— “Introduction to Algorithms, 3@ ed.”
Thomas H. Cormen, Charles E.

. . . . =

Leiserson, Ronald L. Rivest, Clifford Stein, 7 =i

2010, MIT Press. o) ‘;‘\
ALGORITHMS
We do not necessarily follow the s
textbooks,,,

Evaluations

* Viewpoint of evaluation:
— Comprehension of theory and implementation of
algorithms and data structures.
* Evaluation method:
— Reports
| will ask small reports each day.

* | will prepare big report problems, which will be
distributed on January 9.

 Summary of a lecture on January 10.

e Submit your report to Prof. Wint Thida Zaw
(wintthidazaw@uit.edu.mm)

Schedule of Lectures (1)

January 7: 10:00-12:00 and 13:00-15:00
0. Intruduction to Introduction to Algorithms
1. Foundation of Algorithms (1): Basic models
2. Foundation of Algorithms (2): Simple Basic Algorithms
3. Searching (1): Sequential Search and its analysis
4. Searching (2) Block Search
January 8: 10:00-12:00 and 13:00-15:00
5. Searching (3) : Binary Search and Hash method
6. Data Structure (1): Stack, Queue, and Heap
7. Data Structure (2): Binary Search Tree and (its balancing)
8. Sorting (1): Bubble sort, Insertion sort, and Heap sort
January 9: 10:00-12:00 and 13:00-15:00
9. Sorting (2): Merge Sort, Quick sort, complexity of sort algorithms, and
counting sort
10.Data Structure (4): Data structures for graphs
11.Graph Algorithms: Breadth-first search and depth-first search
12.Advanced Algorithm: Dynamic Programming
January 10: Special lectures on recent algorithms by the following professors

http://www.jaist.ac.jp/%7Euehara/PreWALCOM2020/

Schedule of Lectures (2)

January 10: Special lectures on recent algorithms by the following professors
— Spanning trees and Cotrees in Digraphs
* Prof. Muhammad Kaykobad, Bangladesh University of Engineering and
Technology
— Graph Drawing
* Prof. Md. Saidur Rahman, Bangladesh University of Engineering and
Technology
— Approximation Algorithms using ILP
* Prof. Subhas Nandy, Indian Statistical Institute
— Dispersion Problems
* Prof. Shin-ichi Nakano, Gunma University
— Computational Origami
* Prof. Ryuhei Uehara, Japan Advanced Institute of Science and
Technology

A survey of some talk(s) you prefer will be a part of the report.

http://www.jaist.ac.jp/%7Euehara/PreWALCOM2020/

Requirements

Lectures are given in English
You can ask/answer in English (or Japanese :-)

Note that “algorithm” and “programming” are different.
“programming” is implementation of algorithm.

We do not assume any specific language, but we use C as an
example.

You can use any programming language such as ¢, C++, Java,
Delphi,,,, perl, ruby, python, basic... in your reports. (You can
also give in pseudo-code or English, if it is readable enough.)

Introduction to
Algorithms and Data Structures

1. Foundation of Algorithms (1)
Basic Programming Models

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

http://www.jaist.ac.jp/~uehara/course/2020/myanmar/

mailto:uehara@jaist.ac.jp
http://www.jaist.ac.jp/%7Euehara

What's an algorithm?

Algorithm = Description of a method of
solving a problem using computer

 What’s a good algorithm?
— |t outputs a correct answer for any input

— It outputs an answer in reasonable cost
e polynomial time of input length
* polynomial space of input length

* What’s a bad algorithm?
— It takes a loooong time for some input
— |t uses a huuuge memory for some input
— (There exists unsolvable problems by any program)

Models of “computation”

How can we evaluate time and space?
—> First of all, how do computers work?

e Efficiency of algorithms may change according to
computation model

— What are “basic operations”?

— What kind of data can it store?
* Natural numbers, real numbers (?), images, musics...?

e There are some standard models

— Turing machine: That Turing innovated. Base of all
computation models.

— RAM model: Standard model for algorithm theory.

— We may use models based on GPU and/or quantum
computation in near future...

10

Turing Machine Model

Finite

Control

Read/write Motor
Head [.
|

—
Simple theoretical model

Any computable problem is also solvable by a Turing
machine

It is so simple that programming is very tedious

— No mathematical operations including +, -, X, =

— Itis hard to consider “essence” of algorithms

Memory tape

RAM Model
memory is so huge that we

(Random Access Me e

Address Data
0000 0000 %{” 0101 Finite control
0000 0001 0000
0000 0010 1111 1111
0000 0011 11100 1100 Program cou.nter: PC
0000 0100 {1100 0011 Some registers
- word

P .A--“‘""# -
1111 111C¢ j0000 1111| &
1111 111 110000 The number of words = 2k

It consists Memory and CPU (Central Processing Unit)
— We do not mind Input/Output

It is essentially the same as your computer
CPU can access any address randomly (not sequentially) in a unit cycle

Programming language C is a system that shows you this structure

implicitly (like arrays and pointers) 5

Programming Language

 Compiler translates any “readable” program (for
human) to an executable file in machine language
(for the CPU)

* E.g. Programming language C; It is okay if you
know...

variable

array

pointer

control statement (e.g., if, while)

recursive call

bk wbhe

Basic of C: Hello World

 We use Clanguage, but the other languages (C++, C#,
Java, etc.) are basically similar

* We give very rough basic programming
* QOutput “Hello World” on display

#include <stdio.h> /*use printf*/

o
- a statement
Mprlntf(“Hello World”);
h

% In C#, use System.Out.WriteLine instead of printf,

Basic of C: Arithmetic operations

* Basic operations:+, -, *, /, %

Exp.__ Meaning

3+4 Add 3and 4

3-1 Subtract 1 from 3

3*3 Multiply 3 and 3

4/2 Divide 4 by 2

3%2 Reminder by dividing 3 by 2

— Except %, the operations can be used for
integers (int, etc.) and real numbers (float,
double, etc.)

Basic of C: Notes for arithmetic ops.

(int/int) is rounded (by cutting off)

— Ex:1/3 1s O, whereas 1.0/3 is ©0.3333..
double av = (int)sum/(int)num (Fail)

No comma for delimiter

— Ex: 10,000 is not okay. Write as 10000.

We use () to control ordering:

— We cannot use {} or []

— Ex: {(3+4)*3+4}*6 is not correct. Write as
((3+4)*3+4)*6

No power operation (we can use ** in some

languages)

Basic of C: Variable

e Variable: Itis a memory cell, that indicates the “place”
to memory a result of computation

* Rules for naming

— Start with alphabet (UPPER, lower letters, and)

— From the second letter, you can use alphabets and
numbers

* Not any other

— Upper and lower letters are different
* FF, ff, fF, and Ff are all different names

— Not reserved words in C (e.g., main, include, return)

— Good: x,orz, T_T, IE9, projectX, ff4, y2k, JAIST
— Bad: 7th, uehara@jaist, ac. jp, tel#

Basic of C: Ass

ignment statement

“__u

a <

— Store the value 5 to the place named by a in memory

* a=b+5

a 8 <«—t— (The value of b)+5

b 3

— Store value of “value stored at the place named by b (or

value of the variable
e a=a+l

b) plus 5” to the place named by a

a

(value of variable a)+1 = 8+1

-8 4
o <

— Store value of “the v
place named by a

alue of variable a plus 1” to the

18

Basic of C: Declaration of variable

* You have to declare variables beforehand (in C

language)
= =
main(){ b in integer main()
int a,b; a = >5;
a=>5 b= 3; printf(“%d”,a);
printf(“a+b=%d”,a+b); }
}

to declare beforehand. The system guesses and makes

simpler, but sometimes causes bugs... 5

Basic of C: Mathematical functions

...

function Math. symbol type Par:yrgzter

Square \eart(x) VT double double
_________ L S N N N, S——

Power [POwW({X,¥) & rv double double

Logarithm log(x) log, x double idouble
. Logarithm glnglﬂ(}{) gz double double
P— E-:::p(}{:l _____________ gr ____________________________________ dnuhle: _____________ dnuble ______

e Source code: include the following header file
#include <math.h>

 Compile: Option -Im is required

— gcc main.c —lm % Write a = Math.sqrt(b) in C#

Basic of C: Control statements
if statement — conditional branch (1/2)

e Grammar false

if (condition) state 1,;
else state 2;

state 1

If condition is true, perform
statement 1, and perform Ay
statement 2 if it is false

next statement

— Ex: Output EVEN if n is even, and ODD if it is odd.

if(n%2==0) printf(“EVEN”); Z\’eu:ﬁte :c to check
else printf(“0ODD”); e

21

Basic of C: Control statements
if statement — conditional branch (2/2)

* else part can be omitted

if(condition) state 1; conditi false

If condition is true, perform statement 1, on
and perform nothing if it is false

What happens??:

if(condition) state 1; state 2; J
Write as follows: next statement
if(condition) {

state 1;

state 2;

} 22

Basic of C: Representations of
conditions (1/2)

equal nis equal to 2

|= not equal n!l=0 nis notequalto 0

> greater than n>3 n is greater than 3

>= g.t.or equal n>=3 nis g.t. or equal to 3

< less than n<0.01 nis less than 0.01

<= |.t. or equal n<=0.01 nis |.t. or equal to 0.01
&& and O0<n&&n<=10 nisgreater than 0 and

less than or equal to 10

| | or n<0||0<n nis less than 0 or

greater than O
| not I(n <0.01) n is not less than 0.01

Basic of C: Representations of
conditions (2/2)

* You cannot compare 3 or more items
— O<XxK5 = 0<x&&x<5
—a==b==c =» a==b&&b==c

 Example: Check of leap year
— Dividable by 400, or
— Not dividable by 100 but dividable by 4

year%400==0 || (year%100!=0 && year%4==0)

Basic of C: Control statements
for loop — repeating (1/4)

e Grammar

for(eq.l;eq.2;eq.3){
loop body
}

* |t runs as follows:
A) Execute eq. 1

B) Ifeq.2is true, step C,
and step D if false

C) Perform loop body and
eq. 3, jumptoB

D) Go to next statement

At a glance, it seems to be complex,
but we have several standard patterns.

Next
statement

25

Basic of C: Control statements
for loop — repeating (2/4)
Example: Output the sum) i from 1ton

1=1

int i,n,sum;

n=/*initialized somehow*/; Inc
sum=@; you can write i++

. . . instead of i=i+1, and
for(i=1;i<=n;i=i+1){

sum=sum+i; you can write
} sum+=i instead of

pr\intf(“1+...+%d=%d”, n, Sum) ; sum=sum-+i

% You may write as System.Console WriteLine (“1+...+”+n+”=“+sum) in C#

Basic of C: Control statements
for loop — repeating (3/4)
Example: Output the sum) i* from 1to n

1=1

int 1,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+17*1;

¥

Basic of C: Control statements
for loop — repeating (4/4)
* Ex: Compute) (2i—1)7

i=1
int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=2n-1;i=1+2){
sum=sum+i*i;

¥

 Why is this correct?
— Because; D (-1 =143+ 4+ (2n—1)°

i=1

1 indicates 2j-1

Basic of C: Control statements
for loop — repeating (4/4) suppl.
* Ex: Compute) (2i—1)?

1=1

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+(2*i-1)*(2*i-1);

¥

e Of course, you can do in this way.

Basic of C: Control statements
while loop & do-while loop (1/2)

* Grammar
while(condition){ do{
loop body loop body
} }while(condition)

Loop body

conditi false
on

Next

Loop bod
i ! statement

Next statement 30

Basic of C: Control statements
while loop & do-while loop (2/2)
Ex: Compute GCD(a,b) of two integers a and b

int a,b,r; Ex: a=1848, b=630
a=/*some value*/; o
b=/ *some valueH/, a |b |r=a%b
o] 1848 630 588
o V cqo

r=a%b; 630 ¥ 588 ¥ 42

a =b; b=r; 588 ¥ 42 Yo
}while(r!=0); 25 /@ /@

printf(“G.C.D.=%d”,a);

This method (algorithm) is known as
“Euclidean mutual division method”,

which is known as the oldest algorithm. .

% In C#, int[] data = new int[3];

Basic of C: Array (1/2)

Not only “values”

* What is array? in recent language.
Data structure that aligns many data in the
same type (int, float, etc.) sequential in
memory

* Ex: int data[3] data

0 1
1 3

— 3 consecutive memory cells are
kept as name “data”, in which

each cell stores an integer. 2

int data[3];
data[0]=1;
data[2]=2;
data[1]=3;

Basic of C: Array (2/2)
Get the maximum

* Ex: compute the maximum value in integer
data[100]

int data[1l00];

int i,max;

/*data is initialized somehow*/

max=09;

for(1i=0;1i<100;i=1+1){
if(max<data[i]) max=data[i];

}

printf(“maximum data = %d”,max);

Q: Is this program correct?

33

Basic of C: Array (2/2)
Get the maximum

* Ex: compute the maximum value in integer
data[100]

int data[1l00];

int i,max;

/*data is initialized somehow*/

max=0; When all data is

for(i=0;i<100;i=i+1){ negative, it outputs O as
if(max<data[i]) max=datEiReEydastlasl

}

printf(“maximum data = %d”,max);

Q: Is this program correct?

34

Basic of C: Array (2/2)
Get the maximum

* Ex: compute the maximum value in integer
data[100] — make it correct

int data[1l00];
int 1,max;
/*data 1s initialized somehow*/

max=data[0]s The value of max is
for(i=1;i<100;i=i+1){ always in data

if(max<data[i]) max=data[i];

¥

printf(“maximum data = %d”,max);

10 minutes report

 What does the following function compute?
— Find the outputs of collatz(5) and collatz(7)

collatz(unsigned int n) {
print(n); // output n

if (n == 1) return;
1Ff (n%Z::@) Collatz(n/Z); Functignlcall§i;c]se|f
else c011atz(3n+1); gifterent parameters

1 day report (1/2)

* Definition of ExXOR ®:
— 0®0=0, 0 1=1, 1®0=1, 1®1=0 operation

* Forintegers in binary system, we apply ExOR
bitwise; for example,

—10,®7,, = 1010,»111, = 1101, = 13,

1. Compute the following

2. 15,{P7,4

37

1 day report (2/2)
2. What does this function S(x,y) do?

S(int x, y) {
X=X ® Y;
y=X® Y;
X=X ® Y;

} and so on...

I S

Submit the report on
Wednesday, 10:00am.

38

	Introduction to �Algorithms and Data Structures��0. Introduction to Introduction to Algorithms and Data Structures
	Summary
	References
	Evaluations
	Schedule of Lectures (1)
	Schedule of Lectures (2)
	Requirements
	Introduction to �Algorithms and Data Structures��1. Foundation of Algorithms (1)�Basic Programming Models
	What’s an algorithm?
	Models of “computation”
	Turing Machine Model
	RAM Model�(Random Access Memory)
	Programming Language
	Basic of C: Hello World
	Basic of C: Arithmetic operations
	Basic of C: Notes for arithmetic ops.
	Basic of C: Variable
	Basic of C: Assignment statement
	Basic of C: Declaration of variable
	Basic of C: Mathematical functions
	Basic of C: Control statements�if statement – conditional branch (1/2)
	Basic of C: Control statements�if statement – conditional branch (2/2)
	Basic of C: Representations of conditions (1/2)
	Basic of C: Representations of conditions (2/2)
	Basic of C: Control statements�for loop – repeating (1/4)
	Basic of C: Control statements�for loop – repeating (2/4)
	Basic of C: Control statements�for loop – repeating (3/4)
	Basic of C: Control statements�for loop – repeating (4/4)
	Basic of C: Control statements�for loop – repeating (4/4) suppl.
	Basic of C: Control statements �while loop & do-while loop (1/2)
	Basic of C: Control statements �while loop & do-while loop (2/2)
	Basic of C: Array (1/2)
	Basic of C: Array (2/2)�Get the maximum
	Basic of C: Array (2/2)�Get the maximum
	Basic of C: Array (2/2)�Get the maximum
	10 minutes report
	1 day report (1/2)
	1 day report (2/2)

