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Summary

Goal: To understand the meaning and importance
of algorithms.

A formal procedure for solving a problem is called an
algorithm and a way of storing data in a computer is
called a data structure. There may be a number of
combinations of algorithms and data structures for a
problem, in general. It is important to evaluate them by
computation time and space requirement to choose
the best combination. In this lecture, a general but
basic scheme for algorithm design through validation of
the correctness of algorithms and investigation of
improvement of algorithm efficiency is explained.
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Evaluations

* Viewpoint of evaluation:
— Comprehension of theory and implementation of
algorithms and data structures.
* Evaluation method:
— Reports
| will ask small reports each day.

* | will prepare big report problems, which will be
distributed on January 9.

 Summary of a lecture on January 10.

e Submit your report to Prof. Wint Thida Zaw
(wintthidazaw@uit.edu.mm)



Schedule of Lectures (1)

January 7: 10:00-12:00 and 13:00-15:00
0. Intruduction to Introduction to Algorithms
1. Foundation of Algorithms (1): Basic models
2. Foundation of Algorithms (2): Simple Basic Algorithms
3. Searching (1): Sequential Search and its analysis
4. Searching (2) Block Search
January 8: 10:00-12:00 and 13:00-15:00
5. Searching (3) : Binary Search and Hash method
6. Data Structure (1): Stack, Queue, and Heap
7. Data Structure (2): Binary Search Tree and (its balancing)
8. Sorting (1): Bubble sort, Insertion sort, and Heap sort
January 9: 10:00-12:00 and 13:00-15:00
9. Sorting (2): Merge Sort, Quick sort, complexity of sort algorithms, and
counting sort
10.Data Structure (4): Data structures for graphs
11.Graph Algorithms: Breadth-first search and depth-first search
12.Advanced Algorithm: Dynamic Programming
January 10: Special lectures on recent algorithms by the following professors



http://www.jaist.ac.jp/%7Euehara/PreWALCOM2020/

Schedule of Lectures (2)

January 10: Special lectures on recent algorithms by the following professors
— Spanning trees and Cotrees in Digraphs
* Prof. Muhammad Kaykobad, Bangladesh University of Engineering and
Technology
— Graph Drawing
* Prof. Md. Saidur Rahman, Bangladesh University of Engineering and
Technology
— Approximation Algorithms using ILP
* Prof. Subhas Nandy, Indian Statistical Institute
— Dispersion Problems
* Prof. Shin-ichi Nakano, Gunma University
— Computational Origami
* Prof. Ryuhei Uehara, Japan Advanced Institute of Science and
Technology

A survey of some talk(s) you prefer will be a part of the report.


http://www.jaist.ac.jp/%7Euehara/PreWALCOM2020/

Requirements

Lectures are given in English
You can ask/answer in English (or Japanese :-)

Note that “algorithm” and “programming” are different.
“programming” is implementation of algorithm.

We do not assume any specific language, but we use C as an
example.

You can use any programming language such as ¢, C++, Java,
Delphi,,,, perl, ruby, python, basic... in your reports. (You can
also give in pseudo-code or English, if it is readable enough.)
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What's an algorithm?

Algorithm = Description of a method of
solving a problem using computer

 What’s a good algorithm?
— |t outputs a correct answer for any input

— It outputs an answer in reasonable cost
e polynomial time of input length
* polynomial space of input length

* What’s a bad algorithm?
— It takes a loooong time for some input
— |t uses a huuuge memory for some input
— (There exists unsolvable problems by any program)



Models of “computation”

How can we evaluate time and space?
—> First of all, how do computers work?

e Efficiency of algorithms may change according to
computation model

— What are “basic operations”?

— What kind of data can it store?
* Natural numbers, real numbers (?), images, musics...?

e There are some standard models

— Turing machine: That Turing innovated. Base of all
computation models.

— RAM model: Standard model for algorithm theory.

— We may use models based on GPU and/or quantum
computation in near future...

10



Turing Machine Model

Finite

Control

Read/write Motor
Head [ .
|

—
Simple theoretical model

Any computable problem is also solvable by a Turing
machine

It is so simple that programming is very tedious

— No mathematical operations including +, -, X, =

— Itis hard to consider “essence” of algorithms

Memory tape




RAM Model
memory is so huge that we

(Random Access Me e

Address Data
0000 0000 %{” 0101 Finite control
0000 0001 0000
0000 0010 1111 1111
0000 0011 11100 1100 Program cou.nter: PC
0000 0100 {1100 0011 Some registers
- word

P .A--“‘""# -
1111 111C¢ j0000 1111| &
1111 111 110000 The number of words = 2k

It consists Memory and CPU (Central Processing Unit)
— We do not mind Input/Output

It is essentially the same as your computer
CPU can access any address randomly (not sequentially) in a unit cycle

Programming language C is a system that shows you this structure

implicitly (like arrays and pointers) 5



Programming Language

 Compiler translates any “readable” program (for
human) to an executable file in machine language
(for the CPU)

* E.g. Programming language C; It is okay if you
know...

variable

array

pointer

control statement (e.g., if, while)

recursive call

bk wbhe



Basic of C: Hello World

 We use Clanguage, but the other languages (C++, C#,
Java, etc.) are basically similar

* We give very rough basic programming
* QOutput “Hello World” on display

#include <stdio.h> /*use printf*/

o
- a statement
Mprlntf(“Hello World”);
h

% In C#, use System.Out.WriteLine instead of printf,




Basic of C: Arithmetic operations

* Basic operations:+, -, *, /, %

Exp.__ Meaning

3+4 Add 3and 4

3-1 Subtract 1 from 3

3*3 Multiply 3 and 3

4/2 Divide 4 by 2

3%2 Reminder by dividing 3 by 2

— Except %, the operations can be used for
integers (int, etc.) and real numbers (float,
double, etc.)



Basic of C: Notes for arithmetic ops.

(int/int) is rounded (by cutting off)

— Ex:1/3 1s O, whereas 1.0/3 is ©0.3333..
double av = (int)sum/(int)num (Fail)

No comma for delimiter

— Ex: 10,000 is not okay. Write as 10000.

We use () to control ordering:

— We cannot use {} or []

— Ex: {(3+4)*3+4}*6 is not correct. Write as
((3+4)*3+4)*6

No power operation (we can use ** in some

languages)



Basic of C: Variable

e Variable: Itis a memory cell, that indicates the “place”
to memory a result of computation

* Rules for naming

— Start with alphabet (UPPER, lower letters, and )

— From the second letter, you can use alphabets and
numbers

* Not any other

— Upper and lower letters are different
* FF, ff, fF, and Ff are all different names

— Not reserved words in C (e.g., main, include, return)

— Good: x,orz, T_T, IE9, projectX, ff4, y2k, JAIST
— Bad: 7th, uehara@jaist, ac. jp, tel#



Basic of C: Ass

ignment statement

“__u

a <

— Store the value 5 to the place named by a in memory

* a=b+5

a 8 <«—t— (The value of b)+5

b 3

— Store value of “value stored at the place named by b (or

value of the variable
e a=a+l

b) plus 5” to the place named by a

a

(value of variable a)+1 = 8+1

-8 4
o <

— Store value of “the v
place named by a

alue of variable a plus 1” to the

18



Basic of C: Declaration of variable

* You have to declare variables beforehand (in C

language)
= =
main(){ b in integer main()
int a,b; a = >5;
a=>5 b= 3; printf(“%d”,a);
printf(“a+b=%d”,a+b); }
}

to declare beforehand. The system guesses and makes

simpler, but sometimes causes bugs... 5



Basic of C: Mathematical functions

...........................................................................................................................................................................................

function Math. symbol type Par:yrgzter

Square \eart(x) VT double  double
_________ L S N N N, S——

Power [POwW({X,¥) & rv double double

Logarithm log(x) log, x double idouble
. Logarithm glnglﬂ(}{) gz double  double
P— E-:::p(}{:l _____________ gr ____________________________________ dnuhle: _____________ dnuble ______

e Source code: include the following header file
#include <math.h>

 Compile: Option -Im is required

— gcc main.c —lm % Write a = Math.sqrt(b) in C#



Basic of C: Control statements
if statement — conditional branch (1/2)

e Grammar false

if (condition) state 1,;
else state 2;

state 1

If condition is true, perform
statement 1, and perform Ay
statement 2 if it is false

next statement

— Ex: Output EVEN if n is even, and ODD if it is odd.

if(n%2==0) printf(“EVEN”); Z\’eu:ﬁte :c to check
else printf(“0ODD”); e

21



Basic of C: Control statements
if statement — conditional branch (2/2)

* else part can be omitted

if(condition) state 1; conditi false

If condition is true, perform statement 1, on
and perform nothing if it is false

What happens??:

if(condition) state 1; state 2; J
Write as follows: next statement
if(condition) {

state 1;

state 2;

} 22



Basic of C: Representations of
conditions (1/2)

equal nis equal to 2

|= not equal n!l=0 nis notequalto 0

> greater than n>3 n is greater than 3

>=  g.t.or equal n>=3 nis g.t. or equal to 3

< less than n<0.01 nis less than 0.01

<= |.t. or equal n<=0.01 nis |.t. or equal to 0.01
&& and O0<n&&n<=10 nisgreater than 0 and

less than or equal to 10

| | or n<0||0<n nis less than 0 or

greater than O
| not I(n <0.01) n is not less than 0.01



Basic of C: Representations of
conditions (2/2)

* You cannot compare 3 or more items
— O<XxK5 = 0<x&&x<5
—a==b==c =» a==b&&b==c

 Example: Check of leap year
— Dividable by 400, or
— Not dividable by 100 but dividable by 4

year%400==0 || (year%100!=0 && year%4==0)



Basic of C: Control statements
for loop — repeating (1/4)

e Grammar

for(eq.l;eq.2;eq.3){
loop body
}

* |t runs as follows:
A) Execute eq. 1

B) Ifeq.2is true, step C,
and step D if false

C) Perform loop body and
eq. 3, jumptoB

D) Go to next statement

At a glance, it seems to be complex,
but we have several standard patterns.

Next
statement

25




Basic of C: Control statements
for loop — repeating (2/4)
Example: Output the sum ) i from 1ton

1=1

int i,n,sum;

n=/*initialized somehow*/; Inc
sum=@; you can write i++

. . . instead of i=i+1, and
for(i=1;i<=n;i=i+1){

sum=sum+i; you can write
} sum+=i instead of

pr\intf(“1+...+%d=%d”, n, Sum) ; sum=sum-+i

% You may write as System.Console WriteLine (“1+...+”+n+”=“+sum) in C#



Basic of C: Control statements
for loop — repeating (3/4)
Example: Output the sum ) i* from 1to n

1=1

int 1,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+17*1;

¥



Basic of C: Control statements
for loop — repeating (4/4)
* Ex: Compute ) (2i—1)7

i=1
int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=2n-1;i=1+2){
sum=sum+i*i;

¥

 Why is this correct?
— Because; D (-1 =143+ 4+ (2n—1)°

i=1

1 indicates 2j-1



Basic of C: Control statements
for loop — repeating (4/4) suppl.
* Ex: Compute ) (2i—1)?

1=1

int i,n,sum;
n=/*initialized somehow*/;
sum=0;
for(i=1;i<=n;i=i+1){
sum=sum+(2*i-1)*(2*i-1);

¥

e Of course, you can do in this way.



Basic of C: Control statements
while loop & do-while loop (1/2)

* Grammar
while(condition){ do{
loop body loop body
} }while(condition)

Loop body

conditi false
on

Next

Loop bod
i ! statement

Next statement 30




Basic of C: Control statements
while loop & do-while loop (2/2)
Ex: Compute GCD(a,b) of two integers a and b

int a,b,r; Ex: a=1848, b=630
a=/*some value*/; o
b=/ *some valueH/, a |b |r=a%b
o] 1848 630 588
o V cqo

r=a%b; 630 ¥ 588 ¥ 42

a =b; b=r; 588 ¥ 42 Yo
}while(r!=0); 25 /@ /@

printf(“G.C.D.=%d”,a);

This method (algorithm) is known as
“Euclidean mutual division method”,

which is known as the oldest algorithm. .



% In C#, int[] data = new int[3];

Basic of C: Array (1/2)

Not only “values”

* What is array? in recent language.
Data structure that aligns many data in the
same type (int, float, etc.) sequential in
memory

* Ex: int data[3] data

0 1
1 3

— 3 consecutive memory cells are
kept as name “data”, in which

each cell stores an integer. 2

int data[3];
data[0]=1;
data[2]=2;
data[1]=3;




Basic of C: Array (2/2)
Get the maximum

* Ex: compute the maximum value in integer
data[100]

int data[1l00];

int i,max;

/*data is initialized somehow*/

max=09;

for(1i=0;1i<100;i=1+1){
if(max<data[i]) max=data[i];

}

printf(“maximum data = %d”,max);

Q: Is this program correct?

33



Basic of C: Array (2/2)
Get the maximum

* Ex: compute the maximum value in integer
data[100]

int data[1l00];

int i,max;

/*data is initialized somehow*/

max=0; When all data is

for(i=0;i<100;i=i+1){ negative, it outputs O as
if(max<data[i]) max=datEiReEydastlasl

}

printf(“maximum data = %d”,max);

Q: Is this program correct?

34



Basic of C: Array (2/2)
Get the maximum

* Ex: compute the maximum value in integer
data[100] — make it correct

int data[1l00];
int 1,max;
/*data 1s initialized somehow*/

max=data[0]s The value of max is
for(i=1;i<100;i=i+1){ always in data

if(max<data[i]) max=data[i];

¥

printf(“maximum data = %d”,max);




10 minutes report

 What does the following function compute?
— Find the outputs of collatz(5) and collatz(7)

collatz(unsigned int n) {
print(n); // output n

if (n == 1) return;
1Ff (n%Z::@) Collatz(n/Z); Functignlcall§i;c]se|f
else c011atz(3n+1);  gifterent parameters



1 day report (1/2)

* Definition of ExXOR ®:
— 0®0=0, 0 1=1, 1®0=1, 1®1=0 operation

* Forintegers in binary system, we apply ExOR
bitwise; for example,

—10,®7,, = 1010,»111, = 1101, = 13,

1. Compute the following

2. 15,{P7,4

37



1 day report (2/2)
2. What does this function S(x,y) do?

S(int x, y) {
X=X ® Y;
y=X® Y;
X=X ® Y;

} and so on...

I S

Submit the report on
Wednesday, 10:00am.

38
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