
Report on “Introduction to Algorithms and Data Structures”

January 28–February 1, 2019

Ryuhei Uehara (uehara@jaist.ac.jp)

Do not forget to write your name, student ID, problems, and answers on your report. Choose any prob-

lems that make 60 in total and answer them in English. (If you choose more, I’ll take from better scores.)

Submit the final report to Ms. Yu May Paing (yumaypaing@uit.edu.mm) up to February 8 (Friday).

Checked reports will be returned to you.

Problem 1 (10 pts): Suppose that the array a[0], a[1], . . . , a[n − 1] consists of n real numbers. We

like to compute the function f(x) = a[0] + a[1]x + a[2]x2 + · · · + a[n − 1]xn−1. Consider the following

two algorithms:

1. Following the definition, compute a[0]+a[1]×x+a[2]×x×x+a[3]×x×x×x+· · ·+a[n−1]×x×· · ·×x

step by step.

2. Compute after the following modification: a[0] + x× (a[1] + x× (a[2] + x× (a[3] + x× (a[4] + · · ·+
x× (a[n− 2] + x× a[n− 1])))))

Evaluate the number of summation and multiplication operations respectively as functions of n, and

discuss which is a better way.

Problem 2 (10 pts): Prove the following according to the definition:

26n2 + n+ 2019 ∈ O(n3)

26n2 + n+ 2019 ̸∈ O(n)

Problem 3 (10 pts): In an example of the implementation of quick sort (qsort), we use x = a[(i+j)/2]

as a pivot. Show an example of data that gives the worst case for this way of choosing pivot.

Problem 4 (10 pts): In the merge sort, you have to merge two arrays, say, a[i, j] and a[k, ℓ]. Describe

the merge process and evaluate the running time of your algorithm.

Problem 5 (10 pts): Fibonatti number F (n) is defined by F (0) = F (1) = 1, and F (i) = F (i −
1) + F (i − 2) for i > 1. Then show an algorithm that computes F (n) for a given n using dynamic

programming technique. Show the running time of your algorithm.

Problem 6 (20 pts): You want to shuffle the data which is in a[0], a[1], . . . , a[n−1] by randomization.

You can use a random generator function random(k) that returns an integer i with 0 ≤ i < k uniformly

at random. Then, show a shuffle algorithm for a[]. That is, the algorithm outputs each possible permu-

tations of a[] with the same probability. Evaluate the running time of your algorithm. (Hint: there are

several ways, but there exists a simple O(n) time algorithm, which is bit similar to bubble sort.)



Problem 7 (20 pts): Let a[0], a[1], . . . , a[n − 1] be the array of data. Then the partition problem is

defined as follows: For the given input array a[], determine if you can partition data into two subsets that

makes the same value. That is, when S =
∑n−1

i=0 a[i], determine if there is a subset I of {0, 1, . . . , n− 1}
such that

∑
i∈I a[i] = S/2. It is intractable in general. Now, suppose that you know that 0 ≤ a[i] ≤ D

for all indices i and some positive integer D. Then there is a polynomial time algorithm that solves the

partition problem. Show the algorithm, and prove that it runs in polynomial time.


