Introduction to

 Algorithms and Data Structures

 Algorithms and Data Structures}

Lecture 14: Graph Algorithms (1) Breadth-first search and Depth-first search

Professor Ryuhei Uehara,

School of Information Science, JAIST, Japan. uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

Search in Graph

- How can we check all vertices in a graph systematically, and solve some problem?
- e.g., Do you have a path from A to D?
- Two major (efficient) algorithms:
- Breadth First Search: A -> B -> C -> D it starts from a vertex v, and visit all (reachable) vertices from the vertices closer to v.
- Depth First Search: A -> B -> D -> C it starts from a vertex v, and visit every reachable vertex from the current vertex, and back to the last vertex which has unvisited neighbor.

BFS (Breadth-First Search)

- For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and any start point $\mathrm{s} \in \mathrm{V}$, all reachable vertices from s will be visited from s in order of distance from s .
- Outline of method: color all vertices by white, gray, or black as follows;
- White: Unvisited vertex
- Gray: It is visited, but it has unvisited neighbors
- Black: It is already visited, and all neighbors are also visited
- Search is completed when all vertices got black
- Color of each vertex is changed as white \rightarrow gray \rightarrow black

BFS (Breadth-First Search): Program code

$\operatorname{BFS}(V, E, s)\{$

for veV do toWhite(v); endfor
toGray(s);
Q=\{s\};
Queue is the best data
while(Q !=\{\}) \{
$\mathrm{u}=\mathrm{pop}(\mathrm{Q}) ; / / \mathrm{Q} \rightarrow \mathrm{Q}^{\prime}$ where $\mathrm{Q}=\{\mathrm{u}\} \cup \mathrm{Q}^{\prime}$ for $v \in\{v \in V \mid(v, u) \in E\}$
if isWhite(v) then
toGray(v); push(Q,v);
endif
endfor toBlack(u);
\}

BFS (Breadth-First Search): Example

$\mathrm{Q}=\{1\}$

$\mathrm{u}=4$,
visit null
$Q=\{5\}$
black 4

$\mathrm{u}=2$, visit $3,4,5$ $\mathrm{Q}=\{3,4,5\}$ black 2

$$
\begin{aligned}
& \mathrm{u}=3 \\
& \text { visit null } \\
& \mathrm{Q}=\{4,5\} \\
& \text { black } 3
\end{aligned}
$$

Time complexity

 Consider fromthe viewpoints of vertices and edges

- Each vertex never gets white again after initialization.
- Each vertex gets into Q and gets out from Q at most once
- Each edge is checked at most once
- when one endpoint vertex is taken from Q and its neighbors are checked along edges
- $\therefore O(|V|+|E|)$
$\operatorname{BFS}(V, E, s)\{$ for $v \in V$ do toWhite(v); endfor toGray(s);
$\mathrm{Q}=\{\mathrm{s}\}$;
while(Q !=\{\}) \{
$\mathrm{u}=\mathrm{pop}(\mathrm{Q})$;
for $v \in\{v \in V \mid(v, u) \in E\}$
if isWhite(v) then toGray(v); push(Q,v);
endif
endfor
toBlack(u);
\}\}

Application of BFS:

Shortest path problem on graph

Definition of "distance"

- Start vertex v has distance 0
- Except start vertex, each vertex u has distance d+1, where d is the distance of parent of u.
- On BFS, modify that each gray vertex receives its "distance" from black neighbor, then you get (shortest) distance from v to it.

DFS (Depth-First Search)

- For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and start point $\mathrm{s} \in \mathrm{V}$, it follows reachable vertices from s until it reaches a vertex that has no unvisited neighbor, and returns to the last vertex that has unvisited neighbors.

$$
\begin{aligned}
& \text { dfs(V, E, s) \{ } \\
& \text { visit(s) } \\
& \text { for }(s, w) \in E \text { do } \\
& \text { if notVisited(w) then } \\
& \text { dfs(V, E, w) }
\end{aligned}
$$

Program code is relatively simple, and vertices are put into a stack when dfs makes a recursive call.

DFS: Example

DFS(1)

Application of DFS:

Find connected components in a graph

- For a given (disconnected) graph $G=(V, E)$, divide it into connected graphs $G_{1}=\left(V_{1}, E_{1}\right), \ldots$, $G_{c}=\left(V_{c}, E_{c}\right)$.
- We will give a numbering array cn[] such that

$$
\forall u, v \in V, u \in V_{i} \wedge v \in V_{j} \wedge i \neq j \Rightarrow c n[u] \neq c n[v]
$$

Application of DFS:

Find connected components of a graph

cc(V, $\mathrm{E}, \mathrm{cn})\{$ //cn[|V|]
for $v \in V$ do

$$
\mathrm{cn}[\mathrm{v}]=0 ; / * i n i t i a l i z e * /
$$

endfor
k = 1;
for $v \in V$ do
if $\mathrm{cn}[\mathrm{v}]==0$ then dfs(V, $\mathrm{E}, \mathrm{v}, \mathrm{k}, \mathrm{cn}$); $\mathrm{k}=\mathrm{k}+1$;
endif
endfor
dfs(V, $\mathrm{E}, \mathrm{v}, \mathrm{k}, \mathrm{cn})$ \{ cn[v]=k;
for $u \in\{u \mid(v, u) \in E\}$ do if $\mathrm{cn}[\mathrm{u}]==0$ then dfs(V,E, u, $k, c n)$; endif
endfor

BFS v.s. DFS on a graph

- Two major (efficient) algorithms:
- Breadth First Search:

It corresponds to "Queue"

- Depth First Search:

It corresponds to "Stack"

- Both algorithms are easy to implement to run in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time. (In a sense, this time complexity is optimal since you have to check all input data.)
- Depending on applications, we choose better algorithm.

