Introduction to Algorithms and Data Structures

Lecture 13: Data Structure (4) Data structures for graphs

Professor Ryuhei Uehara, School of Information Science, JAIST, Japan. <u>uehara@jaist.ac.jp</u> http://www.jaist.ac.jp/~uehara

Graph

"<u>Vertices</u>" (nodes) are joined by <u>edges</u> (arcs)

- Directed graph: each edge has direction

- Undirected graph: each edge has no direction

Example: relationship between topics

Graph: Notation

- Graph *G* = (*V*, *E*)
 - V: vertex set, E: edge set
- Vertices: $u, v, ... \in V$
- Edges: $e = \{u, v\} \in E$ (undirected) $a = (u, v) \in E$ (directed)
- Weighted variants;
 - -w(u), w(e) Shinjuku
 - Distance, cost, time, etc.

Graph: basic notions/notations (1/2)

- Path: sequence of vertices joined by edges
 - Simple path: it never visit the same vertex again

- Cycle, closed path: path from v to v
- Connected graph: Every pair of vertices is joined by path

Graph: basic notions/notations (2/2)

- Forest: Graph with no cycle
- Tree: Connected, and no cycle

• Complete graph: Every pair of vertices is connected by an edge

– Example: K₅

Computational complexity of graph problems

- The number *n* of vertices, the number *m* of edges;
 - Undirected graph: $m \leq n(n-1)/2$
 - Directed graph: $m \leq n(n-1)$

• m \in O(n²)

- Every tree has m=n-1 edges, so $m \in O(n)$.
- Computational complexity of graph algorithm is described by equations of *n* and *m*.

Representations of a graph in computer

- Adjacency matrix $M = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ • Adjacency list
 - Adjacency list

Vertex List of neighbors

Representation of a graph: matrix representation (adjacency matrix)

- $(u, v) \in E \Rightarrow M[u, v] = 1$
- $(u, v) \notin E \Rightarrow M[u, v] = 0$

It is easy to extend edge-weighted graph.

Representation of a graph: list representation (adjacency list)

• $(u, v) \in E \Leftrightarrow v \in L(u)$

-L(u) is the list of neighbors of u

Adj. matrix v.s. Adj. list

• Space complexity

– Adjacency matrix: $\Theta(n^2)$

- Adjacency list: $\Theta(m \log n)$

- Time complexity of checking if $(u, v) \in E$?
 - Adjacency matrix: Θ(1)
 - Adjacency list : $\Theta(n)$

Q. How about update graph? (e.g., add/remove vertex/edge)