Introduction to

Algorithms and Data Structures

Lecture 13: Data Structure (4)
 Data structures for graphs

Professor Ryuhei Uehara,

School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

Graph

- "Vertices" (nodes) are joined by edges (arcs)
- Directed graph: each edge has direction
- Undirected graph: each edge has no direction

Example: railway in Tokyo

Example: relationship between topics

Graph: Notation

- Graph $G=(V, E)$
- V: vertex set, E : edge set
- Vertices: $u, v, \ldots \in V$
- Edges: $e=\{u, v\} \in E$ (undirected)

$$
a=(u, v) \in E(\text { directed })
$$

- Weighted variants;
$-w(u), w(e)$
- Distance, cost, time, etc.

Sh

Ikebukuro

Graph: basic notions/notations (1/2)

- Path: sequence of vertices joined by edges
- Simple path: it never visit the same vertex again

- Cycle, closed path: path from v to v
- Connected graph: Every pair of vertices is joined by path

Graph: basic notions/notations (2/2)

- Forest: Graph with no cycle
- Tree: Connected, and no cycle

- Complete graph: Every pair of vertices is connected by an edge
- Example: K_{5}

Computational complexity of graph problems

- The number n of vertices, the number m of edges;
- Undirected graph: $m \leqq n(n-1) / 2$
- Directed graph: $m \leqq n(n-1)$
- $\mathrm{m} \in \mathrm{O}\left(n^{2}\right)$
- Every tree has $m=n-1$ edges, so $m \in O(n)$.
- Computational complexity of graph algorithm is described by equations of n and m.

Representations of a graph in computer

- Adjacency matrix

$$
M=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)
$$

- Adjacency list

$$
M=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Representation of a graph: matrix representation (adjacency matrix)

- $(u, v) \in E \Rightarrow M[u, v]=1$
- $(u, v) \notin E \Rightarrow M[u, v]=0$

It is easy to extend edge-weighted graph.

$$
M=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Representation of a graph:

 list representation (adjacency list)- $(u, v) \in E \Leftrightarrow v \in L(u)$
$-L(u)$ is the list of neighbors of u

Adj. matrix v.s. Adj. list

- Space complexity
- Adjacency matrix: $\Theta\left(n^{2}\right)$
- Adjacency list: $\Theta(m \log n)$
- Time complexity of checking if $(u, v) \in E$?
- Adjacency matrix: $\Theta(1)$
- Adjacency list : $\Theta(n)$
Q. How about update graph? (e.g., add/remove vertex/edge)

