Introduction to Algorithms and Data Structures

Lecture 12: Sorting (3)
Quick sort, complexity of sort algorithms, and counting sort

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan. uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

Tony Hoare 1934-

QUICK SORT

C.A.R. Hoare, "Algorithm 64: Quicksort".

Communications of the ACM 4 (7): 321 (1961)

Quick sort

- Main property: On average, the fastest sort!
- Outline of quick sort:
- Step 1: Choose an element x (which is called pivot)
- Step 2: Move all elements $\leqq x$ to left Move all elements $\geqq x$ to right

- Step 3: Sort left and right sequences independently and recursively
- (When sequence is short enough, sort by any simple sorting)

Quick sort: Example

Step 1. Choose an element x

- Sort the following array by quick sort:

65	12	46	97	56	33	75	53	21

- Choose $x=56$, for example;

65	12	46	97	56	33	75	53	21

Quick sort: Example Step 2. Move element w.r.t x:

$\leqq x$ $\geq x$

- Start from $[I, r]=[0, n-1]$, move I and r, Swap $a[I]$ and $a[r]$ when $a[I]>=x \& \& a[r]<x$

Quick sort: Example

 Step 3. Sort left and right sequences recursively

Quick sort: Program

qsort(int $a[]$, int left, int right)\{ int i, j, x;
if(right <= left) return;
i = left; j = right; $x=a[(i+j) / 2] ;$
while(i<=j)\{
while(a[i]<x) i=i+1;
while(a[j]>x) j=j-1;
if(i<=j)\{
swap(\&a[i], \&a[j]); i=i+1; j=j-1; \}
\}
qsort(a, left, j); qsort(a, i, right); \}

Note: In MIT textbook, there is another implementation.

Report Problem 4

In page 2, we consider the following case;

- String data: lexicographical ordering e.g., aaa, aab, aba, abb, baa, bab, bbc, bcb

For any two binary strings $s=s[1] \ldots s[n]$ and
$\mathrm{t}=\mathrm{t}[1] . . . \mathrm{t}[\mathrm{m}]$, describe exact condition if and only if $\mathrm{s}<\mathrm{t}$ (note that $\mathrm{n} \neq \mathrm{m}$ in general).
(Bonus; can you make a dictionary that has all binary strings in your lexicographical ordering, and any finite length word has finite index? How can you avoid the potential problem?)

A part of final report

- For the qsort, construct a bad input that gives the worst case.

Quick sort: Time complexity (1/3) Worst case

- When the pivot x is the maximum or minimum element, we divide length $\mathrm{n} \rightarrow$ length $1+$ length $\mathrm{n}-1$
- This repeats until the longer one becomes 2
- The number of comparisons; $\sum_{k=2}^{n} k \in \Theta\left(n^{2}\right)$

Almost as same as the bubble sort...

Analysis of QuickSort

- Sorting Problem

Input: An array a[n] of n data
Output: The array a[n] such that

$$
a[1]<a[2]<\ldots . . .<a[n]
$$

\star To simplify, we assume that there are no pair $i \neq j$ with a[i]=a[j]

- In practical, QuickSort is said to be "the fastest sort"
- Representative algorithm based on divide-and-conquer
- If partition is well-done, it runs in $\mathrm{O}(n \log n)$ time.
- If each partition is the worst case, it runs in $\mathrm{O}\left(n^{2}\right)$ time.
...Can we analyze theoretically, and guarantee the running time?

Analysis of QuickSort

- Review of QuickSort
- Call qsort(a,1,n)
- If qsort(a, i, j) is called,
- (Randomly) choose a pivot a[m]
- Divide a[] into "former" and "latter" by a[m]. I.e., sort as $a\left[i^{\prime}\right]<a[m]$ for $i \leqq i^{\prime}<m$, and $a\left[j^{\prime}\right]>a[m]$ for $m<j^{\prime}<j$.
- Return qsort(a, $\left.i, i^{\prime}\right), a[m]$, qsort($\left.a, j^{\prime}, j\right)$ as the result

We can always find the center in $\mathrm{O}(j-i)$ time.

- Though they say that QuickSort is the fastest in a practical sense,,,
- When a[m] is always the center of $a[i] . . a[j]$, we have

$$
T(n) \leqq 2 T(n / 2)+(c+1) n
$$

and hence $T(n)=\mathrm{O}(n \log n)$.

- When a[m] is always either $\mathrm{a}[\mathrm{i}]$ or $\mathrm{a}[\mathrm{j}]$, we have

$$
T(n) \leqq T(1)+T(n-1)+(c+1) n
$$

and hence $T(n)=\mathrm{O}\left(n^{2}\right)$.

H_{n} is the harmonic number and $H_{n}=O(\log n)$

Analysis of QuickSort

- They say that QuickSort is the fastest in a practical sense,,,,
- Assumption: each item in $a[i]$... $a[j]$ is chosen uniformly at random.
- Thus the k th largest value is chosen as the pivot with probability $1 /(j-i+1)$
[Theorem] An upper bound of the expected value of the running time of QuickSort is $2 n H(n) \sim 2 n \log n$
- Notation
» s_{k} is the k th largest item in a[1]...a[n].
» Define indicator variable $X_{i j}$ as follows
$X_{i j}= \begin{cases}0 & s_{i} \text { and } s_{j} \text { are not compared in the algorithm } \\ 1 & s_{i} \text { and } s_{j} \text { are compared in the algorithm }\end{cases}$
- Running time of QuickSort
\sim the number of comparisons $=\sum_{i=1}^{n} \sum_{j>i} X_{i j}$

Analysis of QuickSort

[Theorem] An upper bound of the expected value of the running time of QuickSort is $2 n H(n) \sim 2 n \log n$

- The expected value of the running time of QuickSort=

$$
E\left[\sum_{i=1}^{n} \sum_{j>i} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j>i} E\left[X_{i j}\right]
$$

(Linearity of expectation value)

- Define as " $p_{i j}$: probability that s_{i} and s_{j} are compared",

$$
E\left[X_{i j}\right]=p_{i j} \times 1+\left(1-p_{i j}\right) \times 0=p_{i j}
$$

Thus consider the value of $p_{i j}$

- When s_{i} and s_{j} are compared??

1. One of them is chosen as the pivot, and
2. They are not yet separated by qsort up to there
\Leftrightarrow Any element between s_{i} and s_{j} are not yet chosen as a pivot

Analysis of QuickSort

[Theorem] An upper bound of the expected value of the running time of QuickSort is $2 n H(n) \sim 2 n \log n$

- When s_{i} and s_{j} are compared?

1. One of them is chosen as the pivot, and
2. They are not yet separated by qsort up to there
\Leftrightarrow Any element between s_{i} and s_{j} is not yet chosen as a pivot

- The ordering of pivots in $s_{i}, s_{i+1}, s_{i+2}, \ldots, s_{j-1}, s_{j}$ is uniformly at random!
- Thus s_{i} or s_{j} is the first pivot with probability $\frac{2}{j-i+1}$

Therefore, the expected time of the running time of QuickSort

$$
\begin{aligned}
=E\left[\sum_{i=1}^{n} \sum_{j>i} X_{i j}\right]=\sum_{i=1}^{n} \sum_{j>i} E\left[X_{i j}\right]=\sum_{i=1}^{n} \sum_{j>i} p_{i j} & =\sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k} \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}=2 n H(n)
\end{aligned}
$$

COMPUTATIONAL COMPLEXITY OF THE SORTING PROBLEM

Sort on Comparison model

- Sort on comparison model: Sorting algorithms that only use the "ordering" of data
- It only uses the property of " $a>b, a=b$, or $a<b "$; in other words, the value of variable is not used.

Computational complexity of sort on

comparison model

- Upper bound: O($n \log n$)

There exist sort algorithms that run in time proportional to $n \log n$ (e.g., merge sort, heap sort, ...).

- Lower bound: $\Omega(n \log n)$

For any comparison sort, there exists an input such that the algorithm runs in time proportional to $n \log n$.

We consider the lower bound of comparison sorting.

Computational complexity of comparison sort: lower bound

- Simple example; sort 3 data a, b, c:

First, compare (a, b), (b, c), or ($c, a)$. Without loss of generality, we assume that (a, b) is compared; then the next pair is (b, c) or (c, a):
i $\mathrm{b}<\mathrm{c}$?

) $a<c$?	
$c \leq a<b$	
$a<b<c$	$a<c \leq b$

Computational complexity of comparison sort: lower bound

- What we know from sorting of $\{a, b, c\}$:
- For any input, we obtain the solution at most 3 comparison operators.
- There are some input that we have to compare at least 3 comparison operations.
$=$ maximum length of a path from root to a leaf is 3, which gives us the lower bound.

When we build a decision tree such that "the longest path from root to a leaf is shortest," that length of the longest path gives us a lower bound of sorting problem.

Computational complexity of comparison sort: lower bound

The case when n data are sorted

- Let k be the length of the longest path in an optimal decision tree T. Then,

The number of leaves of $T \leqq 2^{k}$

- Since all possible permutations of n items should appear as leaves, $n!\leqq 2^{k}$
- By taking logarithm,

$$
\begin{aligned}
k & =\lg 2^{k} \geq \lg n!=\sum_{i=1}^{n} \lg i \geq \sum_{i=n / 2+1}^{n} \lg \frac{n}{2} \\
& =\frac{n}{2} \lg \frac{n}{2} \in \Omega(n \log n)
\end{aligned}
$$

Non-comparison sort: Counting sort

- We need some assumption:
data $[i] \in\{1, \ldots, k\}$ for $1 \leqq i \leqq n, k \in O(n)$
(For example, scores of many students)
- Using values of data, it sorts in $\Theta(n)$ time.

Counting sort

Input: data $[i] \in\{1, \ldots, k\}$ for $1 \leqq i \leqq n, k \in O(n)$
Idea: Decide the position of element x

- Count the number of element less than x
\rightarrow That number indicates the position of x
Example:

3	7	4	1	2	5

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 1 & 1 & 1 & 1 & 1 & 0 & 1\end{array} \begin{array}{l}4 \\ \hline\end{array}\right)$

1	2	3	4	5	7

Counting sort

Q. When array contains many data of same values?
A. Use 3 arrays $a[], b[], c[]$ as follows;
($\mathrm{a}[\mathrm{]}$: input, b[] : sorted data, c : counter)
$-c[a[i]]$ counts the number of data equal to $a[i]$

- For each j with $0 \leqq j \leqq k$, let $c^{\prime}[j]:=c[0]+\ldots+c[j-1]+c[j]$, then $c^{\prime}[j]$ indicates the number of data whose value is less than j
- Copy $a[i]$ to certain $b[]$ according to the value of $c^{\prime}[]$

Counting sort: program

CountingSort(a, b, k)\{ for $i=0$ to k

$$
c[i]=0 ;
$$

for $\mathrm{j}=0$ to $\mathrm{n}-1$

$$
c[a[j]]=c[a[j]]+1 ;
$$

for $i=1$ to k

$$
c[i]=c[i]+c[i-1] ;
$$

for $\mathrm{j}=\mathrm{n}-1$ downto 0

$$
\begin{aligned}
& b[c[a[j]]-1]=a[j] ; \\
& c[a[j]]=c[a[j]]-1 ;
\end{aligned}
$$

Initialize counter c[]

Count the number of the value in a[i]

Compute c'[] from c[] In an efficient way!

Copy a[] to b[]

Counting sort: Example

 Sort integers (3,6,4, 1, 3, 4, 1,4)- After (2);

$$
c[]=(0,2,0,2,3,0,1)
$$

- After (3);

$$
c[]=(0,2,2,4,7,7,8)
$$

$$
a[7]=4=>b[c[4]-1]=b[6], c[4]=6
$$

$$
a[6]=1 \Rightarrow b[c[1]-1]=b[1], c[1]=1
$$

$$
a[5]=4=>b[c[4]-1]=b[5], c[4]=5
$$

$$
a[4]=3=>b[c[3]-1]=b[3], c[3]=3
$$

$$
a[3]=1 \Rightarrow b[c[1]-1]=b[0], c[1]=0
$$

$$
a[2]=4=>b[c[4]-1]=b[4], c[4]=4
$$

$$
a[1]=6=>b[c[6]-1]=b[7], c[6]=7
$$

$$
a[0]=3=>b[c[3]-1]=b[2], c[3]=2
$$

for $i=0$ to k

$$
c[i]=0 ;
$$

(2)for $j=0$ to $n-1$

$$
c[a[j]]=c[a[j]]+1 ;
$$

(3)for $i=1$ to k

$$
c[i]=c[i]+c[i-1] ;
$$

for $\mathrm{j}=\mathrm{n}-1$ to downto 0 $b[c[a[j]]-1]=a[j] ;$ $c[a[j]]=c[a[j]]-1$;

Sort is said to be "stable" when two variables of the

 same value in order after sorting.- Alien

$$
c[]=(0,2,1,1,8)
$$

$$
S]=c[a[j]]+1 ;
$$

$\mathrm{a}[7]=4=>b[c[4]-1]=b[6], c[4]=6$ $a[6]=1 \Rightarrow b[c[1]-1]=b[1], c[1]=1$ cab $]=4 \Rightarrow b[c[4]-1]=b[5], c[4]=5$ $a[4]=3=>b[c[3]-1]=b[3], c[3]=3$
$a[3]=1=>b[c[1]-1]=b[0], c[1]=0$ © [2] $]=4=>b[c[4]-1]=b[4], c[4]=4$
(3)for $i=1$ to k

$$
c[i]=c[i]+c[i-1] ;
$$

for $\mathrm{j}=\mathrm{n}-1$ to downto 0 $\mathrm{b}[\mathrm{c}[\mathrm{a}[\mathrm{j}]]-1 \mathrm{l}]=\mathrm{a}[\mathrm{j}]$; $\mathrm{c}[\mathrm{a}[\mathrm{j}] \mathrm{]}=\mathrm{c}[\mathrm{a}[\mathrm{j}] \mathrm{]}-1$;
$a[1]=6=>b[c[6]-1]=b[7], c[6]=7$
$a[0]=3=>b[c[3]-1]=b[2], c[3]=2$

