Introduction to Algorithms and Data Structures

Lesson 6: Foundation of Algorithms (3) Big-O notation

Professor Ryuhei Uehara, School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

Big-O notation

- Big-O notation (Bachmann-Landau notation)
 - Big-O notation: O(f(n))
 - Big-Ω notation: $\Omega(f(n))$
 - $-\Theta$ notation: $\Theta(f(n))$

Paul Bachmann 1837–1920

Edmund Landau 1877–1938

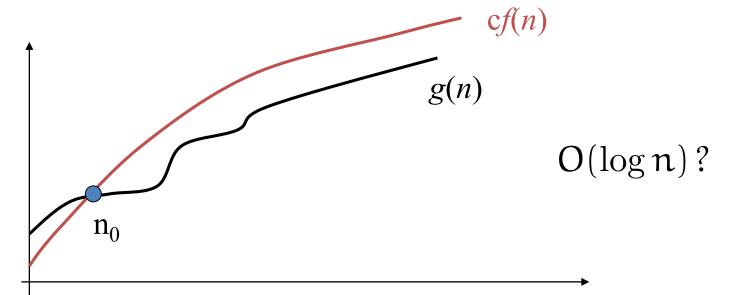
 We have three more, small-o notations, but we don't use in this lesson.

Asymptotical Complexity

- It indicates the behavior of complexity when the size *n* of input grows quite huge.
- We'd like to check how complexity grows (<u>independent</u> to <u>machine model</u> and/or programming techniques)
 - It is enough to consider main/major term
 - Coefficients are not essential from this viewpoint
- Three types:
 - Upper bound
 - Lower bound
 - Both of them

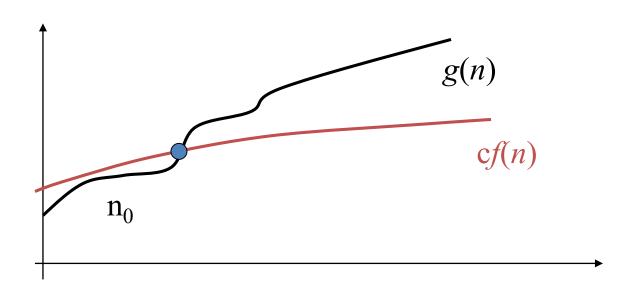
Big-O notation: O(f(n)) Upper bound of complexity

- $O(f(n)) = \{g(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0, g(n) \le cf(n)\}$
 - There exist two positive constants c and n_0 such that $g(n) \leq c f(n) \ \ \text{for every} \ n \geq n_0$
 - Sometimes g(n) = O(f(n)) is used as $g(n) \in O(f(n))$
- Example of f(n): $\log_2 n$, n^2 , 2^n , ...



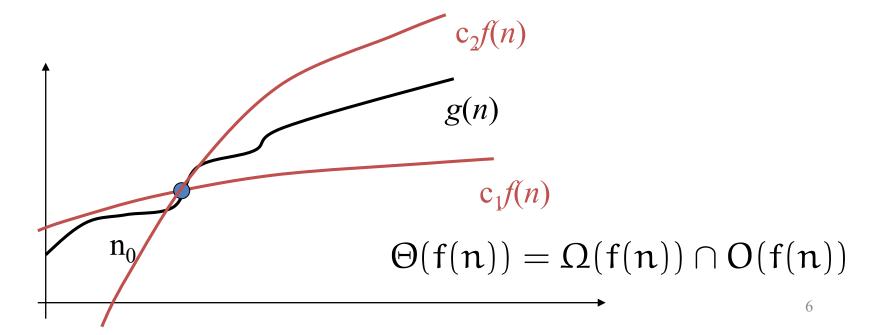
Big- Ω notation: $\Omega(f(n))$ Lower bound of complexity

- $\Omega(f(n)) = \{g(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0, cf(n) \le g(n)\}$
 - There exist two positive constants c and n_0 such that $cf(n) \le g(n)$ for every $n \ge n_0$



Θ notation: $\Theta(f(n))$

- $\Theta(f(n)) = \{g(n) \mid \exists c_1, c_2 > 0, \exists n_0, \forall n \ge n_0, c_1 f(n) \le g(n) \le c_2 f(n)\}$
 - There exist three positive constants c_1, c_2, n_0 such that $c_1 f(n) \le g(n) \le c_2 f(n)$ for every $n > n_0$



Report Problem 2

- 1. Choose functions in O(n), $O(2^n)$
 - -0.1n, $5n^{1000}$, 2.1n, 2^{n+3}
- 2. Prove $23n^2 + n + 2018 \subseteq O(n^2)$

3. Disprove $23n^3+n+2018$ ∈ O(n^2)

4. Prove $O(\log_2 n) = O(\log_{10} n)$

[Warning]
To (dis)prove,
you need to
follow the
definition

Supplements: exponential, polynomial, and logarithm

- 1. A problem is solvable if there is an algorithm that solves the problem.
- 2. A problem is tractable if there is an algorithm that solves the problem in polynomial time of the length of the input.
- 3. A problem is intractable if we have no polynomial time algorithm.