
Introduction to
Algorithms and Data Structures

Lesson 5: Searching (3)
Binary Search and Hash method

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

mailto:uehara@jaist.ac.jp

Binary search

2 5 6 19 33 54 67 72 78

Input: Array s[] such that data are in increasing order
Algorithm: check the central item in each step

– Divide at center in each step!

2 5 6 19 54 67 72 78

2 5 78

Find 5 less than 33

less than 6

Found!

Find 78greater than 33

greater than 72

Found!

2

Binary Search

• In the interval [left, right], compare the central
item s[mid] with desired value x
– x > s[mid] Search in the right half

left = mid+1; (right is not changed)
– x < s[mid] Search in the left half

(left is not changed), right = mid-1
– x = s[mid] Found!

• Repeat above until interval becomes empty

2 5 6 19 33 54 67 72 78

2 5 6 19

2 5

3

Binary Search Algorithm

BinarySearch(x,s[]){
left=0; right=n-1;
do{

mid = (left+right)/2;
if x < s[mid] then

right = mid-1;
else

left = mid+1;
}while(x != s[mid] && left≦right);
if x == s[mid] then return mid;
else return -1;

}

Search interval

Find the center of
the interval

In former half?

Move right endpoint to center

Move left endpoint to center

Exit loop when
• x equals s[mid], or
• Interval becomes empty4

Time complexity of binary search

left=0; right=n-1;
do{
mid = (left+right)/2;
if x < s[mid] then right = mid-1;
else left = mid+1;

}while(x != s[mid] && left≦right);
if x == s[mid] then return mid;
else return -1;

• Search space becomes in half in each loop,
with n/2k = 1,
k = log2 n, where
– n: number of data
– k: number of loops

Therefore, time complexity is O(log n)

5

Data are packed in order

How can we decide the index of the data x?
Compute by a hash function

Data x index (position) in the array

Hash Method

• Management of data so far:
Data are in order in the array

• Hash method: Data are distributed in the array

6

1. Compute “hash” value j for a data x
2. From the j-th element in the array, find the first empty

element, and put x at the index (there may be other data
that has the same hash value)

How to store data in hash

Initialize hash table htb[0]…htb[m-1] by 0;
for i=0 to n-1 do{

Let x be the i-th data;
j = hash(x); //compute hash function
while(htb[j] != 0) //find the empty entry

j = (j+1) % m; // from htb[j]
htb[j] = x; //store x there

}

We denote the size of hash table by m, and
h[j]=0 means that it is “empty” 7

Example：
Set S = {3, 4, 6, 7, 9, 11, 14, 15, 17, 18, 20, 23, 24, 26, 27, 29, 30, 32}

Hash function hash(x) = x mod 27
(the size of hash table is 27)
3 3 11 11 20 20 29 2
4 4 14 14 23 23 30 3
6 6 15 15 24 24 32 5
7 7 17 17 26 26
9 9 18 18 27 0

Hash value is on
the right hand

0 1 2 3 4 5 6 7 8 9 10 11 12 13
htb 27 0 29 3 4 30 6 7 32 9 0 11 0 0

14 15 16 17 18 19 20 21 22 23 24 25 26
htb 14 15 0 17 18 0 20 0 0 23 24 0 26

If we use this hash function, red numbers are in collision

8

Hash method: Searching
• For a given data x, compute the hash function

and obtain the value j
– If it is the same value of x, halt.
– If it is not equal to x and not 0, check the next
– If it is 0, we have no data x in the table

Search_In_Hash(x){
j = hash(x);
while(htb[j] != 0 and htb[j] != x)

j = (j+1) % m; //move to next
if htb[j] == x then return j;
else return -1;

}
9

0 1 2 3 4 5 6 7 8 9 10 11 12 13
htb 27 0 29 3 4 30 6 7 32 9 0 11 0 0

14 15 16 17 18 19 20 21 22 23 24 25 26
htb 14 15 0 17 18 0 20 0 0 23 24 0 26

Case x=14： Since hash(14)=14, it finds at htb[14].

Case x=32： Since hash(32)=5, it searches from htb[5], and finds
after checking 30, 6, and 7.

Case x=41： Since hash(41)=14, it searches from htb[14],
and finds 0 after checking 14 and 15.
It reports x=41 not found.

Hash method: Example of searching

10

Performance of hash
• The number t of table accesses depends on

the occupation ratio (or load ratio) α = n/m.
– When it finds:

– When it fails:

– Practical Tips: it works well for two primes p, q,
and set hash(x) = p x + q (mod n)

11

t

t

Note: It is independent from n, the size of data.
When hash table is large, each access is a constant time.

	Introduction to �Algorithms and Data Structures��Lesson 5: Searching (3)� Binary Search and Hash method
	Binary search
	Binary Search
	Binary Search Algorithm
	Time complexity of binary search
	Hash Method
	How to store data in hash
	スライド番号 8
	Hash method: Searching
	Hash method: Example of searching
	Performance of hash

