
Introduction to
Algorithms and Data Structures

Lesson 4: Searching (2)
Block search

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.

uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

1

mailto:uehara@jaist.ac.jp

Search Problem

• Problem: S is a given set of data. For any given
data x, determine efficiently if S contains x or
not.

• Efficiency: Estimate the time complexity by n =
|S|, the size of the set S
– In this problem, “checking every data in S” is

enough, and this gives us an upper bound O(n) in
the worst case.

2

Roughly, “the running time is
proportional to n.”

Data structure 2
Data in the array in increasing order

• s[]=

• This is something like dictionary and address
book…

Q: Do you use sequential search algorithm
when you check dictionary?

3 9 12 25 29 33 37 65 87

3

No!

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

Algorithm 2: m-block method

4

Simple implementation:
divide into the blocks of same size except the last one.

0 n/m 2n/m n-1

Block 0 Block 1 Block 2 Block m-1

Algorithm 2: m-block method

5

・ Each block has length k, where k = n/m
・ Block Bj has items from s[jk] to s[(j+1)k-1]: Bj = [jk, (j+1)k-1]

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

Algorithm 2: m-block method

j=0;
while(j<=m-2)

if x<=s[(j+1)*k-1] then exit from loop
else j=j+1;

If the program exits from the loop, the variable j indicates
the index of the block, and j indicates the last one otherwise.

6

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

Algorithm 2: m-block method

i=j*k; t = min{ (j+1)*k-1, n-1 };
while(i < t)

if x≧s[i] then exit from the loop；
else i=i+1; //next item in the block

if x == s[i] then return i and halt；
else return -1 and halt.

7

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

x=20

Example and time complexity

• # of comparisons ≦ # of blocks ＋ length of block = m + n/m
• What the value of m that minimize m + n/m ?

– Let f(m) = m + n/m, and take the differential for m
– f’(m) = 1 – n/m2 = 0 → m = √n
– When m = √n, # of comparisons≦ √n + n/√n = 2 √n

• Time complexity: O(√n)

8

For example, when n=1000000,
Linear search takes n/2=500000 comparisons, but
Block search takes √1000000=1000 comparisons!!

In the m-block method, we use sequential search in each block.
We can use m-block method again in the block!!

Divide search area into ｍ blocks, and repeat the same
process for the block that contains ｘ, and repeat again and
again up to the block has length at most some constant N

Idea of double m-block method

Algorithm 3: Double m-block method

9

Recursive call: basic and strong idea

Length of the block

Recursive call

sequential search if the
interval is short enough

10

double-m-block-search(int left, int right) {
Length L = right – left + 1
if L > Lmin then

k = L/m;
for j = 0 to m-2 do

if x ≦ s[left + (j+1)k - 1] then exit the loop;
endfor
f = left + jk; t = min{left + (j+1)k – 1, n-1};
double-m-block-search(f, t);

else
i = left;
while (i < right)

if x ≦ s[i] then exit the loop else i = i + 1;
if x == s[i] then return i;
else return -1;

endif
}

Some constant

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

Example:
find 20 (x=20) for block size 3

11

Analysis of time complexity

• Length of search space

• Let ni be the length after the i-th call

12

Analysis of time complexity

• The length ni after the i-th recursive call:
ni≦ n/mi + 2

• How many recursive calls made?

• Each recursive call make at most m-1
comparisons, so the total number of
comparisons is

• The time complexity is O(log n)
13

Analysis of time complexity:
The best value of m

14

•

• To make T(n,m) the minimum, smaller m is
better because m-1 grows faster than log2 m
(which will be checked in the big-O notation).

• Therefore, m=2 is the optimal

We will have “binary search”

	Introduction to �Algorithms and Data Structures��Lesson 4: Searching (2)� Block search
	Search Problem
	Data structure 2�Data in the array in increasing order
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Example and time complexity
	Algorithm 3: Double m-block method
	スライド番号 10
	Example: �find 20 (x=20) for block size 3
	Analysis of time complexity
	Analysis of time complexity
	Analysis of time complexity: �The best value of m

