Introduction to
 Algorithms and Data Structures

Lesson 2: Foundation of Algorithms (2) Simple Basic Algorithms

Professor Ryuhei Uehara,
School of Information Science, JAIST, Japan.
uehara@jaist.ac.jp
http://www.jaist.ac.jp/~uehara

Algorithm?

- Algorithm: abstract description of how to solve a problem (by computer)
- It returns correct answer for any input
- It halts for any input
- Description is not ambiguity
- (operations are well defined)
- Program: description of algorithm by some computer language
- (Sometimes it never halt)

Design of Good Algorithm

- There are some design method
- Estimate time complexity (running time) and space complexity (quantity of memory)
- Verification and Proof of Correctness of Algorithm
- Bad algorithm
- Instant idea: No design method
- Just made it: No analysis of correctness and/or complexity

Simple example and algorithm

- Stock trading algorithm

Goal: Maximize your benefit

- Naïve method
- Some improvements
- More improvement: from $\mathrm{O}\left(n^{2}\right)$ to $\mathrm{O}(n)$

Stok trading (maximize benefit)

- You would buy once and sell once. Can you find the maximum benefit?

```
2017.01 137
2017.02 150
2017.03 124
2017.04 118
2017.05 145
2017.06 132
2017.07 119
2017.08 105
2017.09 139
2017.10 138
2017.11 129
            \square_
    \square
    \square
    \square
\square_
\square
\square
\square
Note:
You cannot sell before buy!!
```

2017.12100

Formalization of the problem

- int $s p[n]:$ array of stock prices (e.g. $n=12$)
- When you buy at month i and sell at month j
- buy: $s p[i]$
- sell: sp[j]
- benefit: $\mathrm{sp}[j]$ - $s p[i]$
- Goal: maximize sp[j]-sp[i]

That is, compute the following;

$$
\max \{s p[j]-s p[i] \mid 0<=i<j<n\}
$$

Outline of algorithms

- Method A

```
for i=0 to n-2
    for j=i+1 to n-1
        find benefit sp[j]-sp[i]
```

- Method B:
for $j=1$ to $n-1$
for $i=0$ to $j-1$
find benefit sp[j]-sp[i]

Algorithm based on method A

- Is the following algorithm efficient?

MaxBenefit(sp[],n)\{/*sp[0]...sp[n-1]*/
mxp=0; /*Maximum benefit*/
for $i=0$ to $n-2$
for $j=i+1$ to $n-1$
d = sp[j] - sp[i]; /*benefit*/
if $d>m x p$ then $m x p=d ;$
/*Update max. benefit*/
endfor
endfor
return mxp;
\}

Algorithm based on method A

- Is the following algorithm efficient?

MaxBenefit(sp[],n)\{/*sp[0]...sp[n-1]*/
mxp=0; /*Maximum benefit*/
for $i=0$ to $n-2$
for $j=i+1$ to $n-1$
d $=s p[j]-s p[i] ; / * b e n e f i t * /$
if $d>m x p$ then $m x p=d ;$
/*Update max. benefit*/
endfor endfor
return mxp;

For fixed i, benefit is maximum when $s p[j]$ is maximum
\Rightarrow We don't need to compute sp[j]-sp[i] every time

Algorithm based on method A (Improved)

```
MaxBenefit(sp[],n){ /*sp[0]...sp[n-1]*/
    mxp=0; /* Maximum benefit */
    for i=0 to n-2
    mxsp = sp[i];
    for j=i+1 to n-1 mxsp: maximum trade
        if sp[j] > mxsp then mxsp = sp[j];
        endfor
        d = mxsp - sp[i]; Subtraction is out of loop
if d > mxp then mxp = d;
    endfor
    return mxp;
}
```


Outline of algorithms

- Method A

```
for i=0 to n-2
    for j=i+1 to n-1
        find benefit sp[j]-sp[i]
```

- Method B:

```
for j=1 to n-1
    for i=0 to j-1
        find benefit sp[j]-sp[i]
```


Algorithm based on method B

MaxBenefit(sp[],n)\{ /*sp[0]...sp[n-1]*/
mxp=0; /* Maximum benefit */
for $\mathrm{j}=1$ to $\mathrm{n}-1$
mnsp = sp[j];
for $i=0$ to $j-1$
mnsp: cheapest stock price
if sp[i] < mnsp then mnsp = sp[i];
endfor
d = sp[j] - mnsp;
if $d>m x p$ then $m x p=d ;$
endfor
return mxp;
\}

Efficiency of algorithms

- Number of loops (or repeating)
- Method (A): number of loops is $\mathrm{O}\left(n^{2}\right)$

$$
\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1=\sum_{i=0}^{n-2}(n-1-i)=\frac{n^{2}-n}{2} \leq n^{2} / 2
$$

- Method (B): number of loops is $\mathrm{O}\left(n^{2}\right)$

$$
\sum_{j=1}^{n-1} \sum_{i=0}^{j-1} 1=\sum_{j=1}^{n-1} j=\frac{n^{2}-n}{2} \leq n^{2} / 2
$$

Notation that
proportion to n^{2}
Q. Can we decrease them?

More improvement of algorithms; decreasing the number of loops

- Consider the second loop
- Method A:
- $\operatorname{MAX}[i, n-1]$ is the maximum between time i and time $n-1$
- It computes in order $\operatorname{MAX}[1, n-1], \operatorname{MAX}[2, n-1], \ldots$

Q: can we compute $\operatorname{MAX}[i, n-1]$ from $\operatorname{MAX}[i-1, n-1]$?
NO!

- Method B:
- $\operatorname{MIN}[0, j-1]$ is the minimum between time 0 to time $j-1$
- It computes in order $\operatorname{MIN}[0,0], \operatorname{MIN}[0,1], \ldots$

Q: can we compute $\operatorname{MIN}[0, j]$ from $\operatorname{MIN}[0, j-1]$?
YES! $\operatorname{MIN}[0, j]=\min (\operatorname{MIN}[0, j-1], \operatorname{sp}[j])$

Algorithm based on method B

MaxBenefit(sp[],n)\{ /*sp[0]. $m x p=0 ; ~ / * ~ M a x i m u m ~ b e n e f i t ~$ for $j=1$ to $n-1$ $m n s p=s p[j] ;$
for $i=0$ to $j-1$
if $s p[i]<m n s p$ then $m n s p=s p[i] ;$ endfor
$d=s p[j]$ - mnsp;
if d > mxp then $m x p=d ;$
endfor return mxp;
\}
We can keep msf, the minimum when $j=k$, and use it; when $j=k+1$, the minimum is the smaller one of msf and $\mathrm{sp}[\mathrm{k}]$.

Efficient algorithm

- Algorithm that runs in $\mathrm{O}(n)$ time MaxBenefit(sp[],n)\{/*sp[0]...sp[n-1]*/ $m x p=0 ; ~ / * ~ M a x i m u m ~ b e n e f i t ~ * / ~$ msf = sp[0]; /* Cheapest value so far */ for $j=1$ to $n-1$
d = sp[j] - msf;
if d > mxp then mxp = d;
if $s p[j]<m s f$ then msf $=s p[j] ;$
endfor
return mxp;
\}

