Lesson 13. Numerical Algorithms (2): Generating Prime Numbers
 I111E - Algorithms and Data Structures

Ryuhei Uehara \& Giovanni Viglietta uehara@jaist.ac.jp \& johnny@jaist.ac.jp

JAIST - November 28, 2019

All material is available at www.jaist.ac.jp/~uehara/course/2019/i111e

Goals of today's lecture

- Efficiently test if a (large) number is prime
- Use Fermat's little theorem
- Be aware of Carmichael numbers
- Learn about randomized algorithms
- Efficiently generate (large) prime numbers
- Exploit the asymptotic distribution of primes
- Correctly estimate the expected running time

Prime numbers

A prime is an integer >1 that is only divisible by 1 and by itself.
E.g., 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots (there are infinitely many).

Theorem: every positive integer can be written as a product of prime numbers in a unique way. E.g., $90=2 \cdot 3 \cdot 3 \cdot 5$.

A prime is an integer >1 that is only divisible by 1 and by itself.
E.g., 2, 3, 5, 7, 11, 13, 17, 19, 23, ... (there are infinitely many).

Theorem: every positive integer can be written as a product of prime numbers in a unique way. E.g., $90=2 \cdot 3 \cdot 3 \cdot 5$.

The safety of modern cryptosystems relies on these facts:

- Testing if a (large) number is prime is easy.
- Finding a prime factor of a (large) number is hard. Note: if we search for the factors of a number by dividing it by all smaller numbers, we do exponentially many divisions!

How can we check if a number is prime without trying to factor it?

Fermat's little theorem

In 1640, Pierre de Fermat stated the following:
Theorem: if p is prime and $1 \leq a<p$, then $a^{p-1} \equiv 1(\bmod p)$.

Fermat's little theorem

Theorem: if p is prime and $1 \leq a<p$, then $a^{p-1} \equiv 1(\bmod p)$.
Proof: if we multiply the numbers $1,2, \ldots, p-1$ by a, we obtain a permutation of them. Example with $a=3$ and $p=7$:

This is because a and p are relatively prime, so:
$a \cdot i \equiv a \cdot j(\bmod p) \Longrightarrow i \equiv j(\bmod p)$
(hence no two numbers are mapped into the same number)
and $a \cdot i \equiv 0(\bmod p) \Longrightarrow i \equiv 0(\bmod p)$
(hence no number is mapped into 0).
So, $\{1,2, \ldots, p-1\}=\{a \cdot 1 \bmod p, a \cdot 2 \bmod p, \ldots, a \cdot(p-1) \bmod p\}$.
Taking the products, $(p-1)!\equiv a^{p-1}(p-1)!(\bmod p)$.
But $(p-1)$! is relatively prime to p, so $1 \equiv a^{p-1}(\bmod p)$.

A possible primality test

This theorem suggests a "factorless" test of primality:

- Given a positive integer N
- Randomly pick a "witness" a such that $1 \leq a<N$
- Compute $a^{N-1}(\bmod N)\left(\right.$ in $O\left(n^{3}\right)$ time)
- If the result is not 1 , return " N is not prime"
(N contradicts Fermat's little theorem)
- Otherwise, return " N may be prime"

A possible primality test

This theorem suggests a "factorless" test of primality:

- Given a positive integer N
- Randomly pick a "witness" a such that $1 \leq a<N$
- Compute $a^{N-1}(\bmod N)\left(\right.$ in $O\left(n^{3}\right)$ time)
- If the result is not 1 , return " N is not prime" (N contradicts Fermat's little theorem)
- Otherwise, return " N may be prime"

Why "may be prime"?
Because Fermat's little theorem is not an if-and-only-if condition!
There are cases where N is not prime, but $a^{N-1} \equiv 1(\bmod N)$: if $N=15=3 \cdot 5$ and $a=4$, then $4^{14} \equiv\left(4^{2}\right)^{7} \equiv 1^{7} \equiv 1(\bmod 15)$.
Fortunately, if $N=15$, all other choices of a witness $a>1$ make the test correctly report that 15 is not a prime.

But there are much worse examples...

Carmichael numbers

There are non-prime numbers N for which every choice of a (relatively prime to N) makes the test return " N may be prime".

In 1910, Robert Carmichael found the smallest such number: 561.
Other examples are $1105,1729,2465,2821,6601,8911, \ldots$
Bad news: there are infinitely many "Carmichael numbers".
Good news: they are very rare, so we may choose to ignore them!

Non-Carmichael numbers

So, our primality test is quite ineffective for Carmichael numbers. But what about all other numbers, which are the vast majority?

For a non-prime and non-Carmichael number N, there is at least a witness a relatively prime to N such that $a^{N-1} \not \equiv 1(\bmod N)$. We call a a "good witness", because it makes the test correctly report that N is not a prime. What about the other witnesses?

Non-Carmichael numbers

So, our primality test is quite ineffective for Carmichael numbers. But what about all other numbers, which are the vast majority?
For a non-prime and non-Carmichael number N, there is at least a witness a relatively prime to N such that $a^{N-1} \not \equiv 1(\bmod N)$.

We call a a "good witness", because it makes the test correctly report that N is not a prime. What about the other witnesses?

Theorem: if there is a good witness a relatively prime to N (i.e., if N is non-Carmichael), then at least half the witnesses are good.

Proof: every bad witness b has a good "twin" $a \cdot b$:
$(a \cdot b)^{N-1} \equiv a^{N-1} \cdot b^{N-1} \equiv a^{N-1} \cdot 1 \equiv a^{N-1} \not \equiv 1(\bmod N)$.
And none of these twins are the same: if b and b^{\prime} are bad witnesses, then $a \cdot b \equiv a \cdot b^{\prime}(\bmod N) \Longrightarrow b \equiv b^{\prime}(\bmod N)$.
So, there are at least as many good witnesses as bad witnesses.

Fermat primality test

What are the consequences on our primality test?

- If N is prime, all witnesses are good (by Fermat's little theorem), so the test always reports that N may be prime.
- If N is not prime (and not Carmichael), then
- $\geq 50 \%$ of the witnesses are good (by the previous theorem), and correctly report that N is definitely not prime.
- $\leq 50 \%$ of the witnesses are bad, and wrongly report that N may be prime.

So the Fermat test has a probability of at most $1 / 2$ of being wrong! Can we reduce this "one-sided" probability?

Fermat primality test

If we repeat the test k times (always picking a at random), the probability of getting the wrong answer is at most $1 / 2^{k}$: this can be made arbitrarily small!

Fermat primality test

An implementation using our C library from the previous lesson:

```
char* random_less(char* n) {
    int bits = num_length(n);
    ohar* a = malloc(bits + 1);
    for (int i = 0; i < bits; i+t) a[i] = rand() % 2;
    a[bits] = -1;
    if (compare(a, n) !=1) a = sub (a, n);
    return a;
}
int test_prime(char* n, int k) {
    char** m = sub (n, one);
    for (int i}=0;i<k;i++) 
        char** a = add(random_less(m), one, 2);
        char* e = expM(a, m, n);
        if (compare(e, one) !=0) return 0;
    }
    return 1;
}
```

The running time is $O\left(k n^{3}\right)$, where n is the number of bits of N.

Distribution of prime numbers

We now want to generate a prime number of n bits.
How can we do it efficiently?
We need to know something about the distribution of primes:

Theorem: The number of primes $\leq x$ is asymptotic to $x / \ln x$.
If x is n bits long, then $n \approx \log _{2} x$.
But $\ln x<\log _{2} x \approx n$.
It follows that, among the x numbers of n bits,
at least a fraction of $1 / n$ are primes.
\rightarrow Prime numbers are abundant!

Prime numbers are everywhere

My car's plate:

Today's date in the Japanese calendar: $28 / 11 / 1 \rightarrow 28111$ is prime.
In this room, 2-3 people are likely to have a prime phone number.

Randomly generating prime numbers

This suggests a simple method for generating prime numbers:

- Pick a random number of n significant bits
- Test if it is prime: if it is, return it
- Otherwise, repeat from the first step

Randomly generating prime numbers

This suggests a simple method for generating prime numbers:

- Pick a random number of n significant bits
- Test if it is prime: if it is, return it
- Otherwise, repeat from the first step

```
char* random_bits(int bits) {
    char* a = malloc(bits + 1);
    for (int i = 0; i < bits - 1; i++) a[i] = rand() % 2;
    a[bits - 1] = 1;
    a[bits] = -1;
    return a;
}
char* generate_prime(int bits, int k) {
    char* n;
    do {
        n = random_bits(bits);
    } while (test_prime(n, k) == 0);
    return n;
}
```

How efficient is this algorithm? In the worst case, it will never find a prime! But what about the average case?

Expected running time

We know: a random n-bit number is prime with probability $1 / n$.
We want: the expected number of times E we have to pick a random n-bit number before we find a prime.

Expected running time

We know: a random n-bit number is prime with probability $1 / n$.
We want: the expected number of times E we have to pick a random n-bit number before we find a prime.

After the first extraction, we get a prime with probability $1 / n$.
Otherwise, we have to perform E more extractions on average.
This yields the equation $E=\frac{1}{n} \cdot 1+\frac{n-1}{n} \cdot(1+E)$.
Solving for E, we get $E=n$.
On average, our algorithm runs in $O\left(k n^{3}\right) \cdot n=O\left(k n^{4}\right)$ time.

Effectiveness of the Fermat test

How good is the Fermat test at finding prime numbers?
As we know, the chance of a false positive is 50% in the worst case.
But on randomly chosen numbers, it is typically much lower!
Even $a=2$ is a good witness for the vast majority of numbers:
all numbers $\leq 25 \cdot 10^{9}$

$\approx 20,000$ non-primes $\approx 10^{9}$ primes

The chance of erroneously outputting a non-prime 36-bit number is $\approx 20,000 / 10^{9}=0.002 \%$, and it drops rapidly with higher n and k.

Announcements

Next lesson:
December 2 (Mon)—Numerical Algorithms (3): Cryptography
Questionnaire: last 10 minutes. Bring your laptop!

Final exam: December 4 (Wed), 10:50-12:30

