Lesson 13. Numerical Algorithms (2):
Generating Prime Numbers
I111E — Algorithms and Data Structures

Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnnyQjaist.ac.jp

JAIST — November 28, 2019

All material is available at
WWw.Jjaist.ac.jp/~uehara/course/2019/illle

uehara@jaist.ac.jp
johnny@jaist.ac.jp
www.jaist.ac.jp/~uehara/course/2019/i111e

Goals of today's lecture

o Efficiently test if a (large) number is prime

o Use Fermat's little theorem
o Be aware of Carmichael numbers

o Learn about randomized algorithms

e Efficiently generate (large) prime numbers

o Exploit the asymptotic distribution of primes

o Correctly estimate the expected running time

Prime numbers

A prime is an integer > 1 that is only divisible by 1 and by itself.
Eg., 2 3,5,7, 11, 13, 17, 19, 23, ... (there are infinitely many).

Theorem: every positive integer can be written as a product of

prime numbers in a unique way. E.g., 90=2-3-3-5.

Prime numbers

A prime is an integer > 1 that is only divisible by 1 and by itself.
Eg., 2 3,5,7, 11, 13, 17, 19, 23, ... (there are infinitely many).

Theorem: every positive integer can be written as a product of

prime numbers in a unique way. E.g., 90=2-3-3-5.
The safety of modern cryptosystems relies on these facts:
o Testing if a (large) number is prime is easy.

e Finding a prime factor of a (large) number is hard.

Note: if we search for the factors of a number by dividing it

by all smaller numbers, we do exponentially many divisions!

How can we check if a number is prime without trying to factor it?

Fermat's little theorem

In 1640, Pierre de Fermat stated the following;:

Theorem: if p is prime and 1 < a < p, then a’?~! =1 (mod p).

Fermat’s little theorem

Theorem: if p is prime and 1 < a < p, then a”?~! =1 (mod p).
Proof: if we multiply the numbers 1,2,...,p — 1 by q,
we obtain a permutation of them. Example with a =3 and p=T7:

12 3 4 5 6

12 3 4 5 6

This is because a and p are relatively prime, so:

a-i=a-j (modp) = i=j (mod p)

(hence no two numbers are mapped into the same number)

and -7 =0 (mod p) = i =0 (mod p)

(hence no number is mapped into 0).

So, {1,2,...,p—1}={a-1mod p,a-2 mod p,...,a-(p—1) mod p}.
Taking the products, (p — 1)! = a”~1(p — 1)! (mod p).

But (p — 1)! is relatively prime to p, so 1 = a”~! (mod p).

A possible primality test

This theorem suggests a “factorless” test of primality:
o Given a positive integer N
@ Randomly pick a “witness” a such that 1 <a < N
e Compute a1 (mod N) (in O(n?) time)

@ If the result is not 1, return "IN is not prime”
(IV contradicts Fermat's little theorem)

@ Otherwise, return "N may be prime”

A possible primality test

This theorem suggests a “factorless” test of primality:
o Given a positive integer N
@ Randomly pick a “witness” a such that 1 <a < N
e Compute a1 (mod N) (in O(n?) time)
@ If the result is not 1, return "IN is not prime”
(IV contradicts Fermat's little theorem)

@ Otherwise, return "N may be prime”
Why “may be prime"?
Because Fermat's little theorem is not an if-and-only-if condition!

There are cases where N is not prime, but ¢! =1 (mod N):
if N=15=3-5and a =4, then 4 = (42)" =17 =1 (mod 15).

Fortunately, if N = 15, all other choices of a witness a > 1
make the test correctly report that 15 is not a prime.

But there are much worse examples...

Carmichael numbers

There are non-prime numbers N for which every choice of a

(relatively prime to N) makes the test return “N may be prime".

In 1910, Robert Carmichael found the smallest such number: 561.
Other examples are 1105, 1729, 2465, 2821, 6601, 8911, ...
Bad news: there are infinitely many “Carmichael numbers”.

Good news: they are very rare, so we may choose to ignore them!

Non-Carmichael numbers

So, our primality test is quite ineffective for Carmichael numbers.
But what about all other numbers, which are the vast majority?

For a non-prime and non-Carmichael number N, there is at least
a witness a relatively prime to N such that aV=! # 1 (mod N).

We call a a “good witness”, because it makes the test correctly
report that /V is not a prime. What about the other witnesses?

Non-Carmichael numbers

So, our primality test is quite ineffective for Carmichael numbers.
But what about all other numbers, which are the vast majority?

For a non-prime and non-Carmichael number N, there is at least
a witness a relatively prime to N such that aV=! # 1 (mod N).

We call a a “good witness”, because it makes the test correctly
report that /V is not a prime. What about the other witnesses?

Theorem: if there is a good witness a relatively prime to N

(i.e., if N is non-Carmichael), then at least half the witnesses are good.
Proof: every bad witness b has a good “twin" a - b:

(a- D)V t=aV 1.0V 1=a""1.1=a""1 #£1 (mod N).

And none of these twins are the same: if b and 1/ are bad witnesses,
thena-b=a-0 (mod N) = b=10" (mod N).

So, there are at least as many good witnesses as bad witnesses.

Fermat primality test

bad witnesses good witnesses

bo————=0ab o}

What are the consequences on our primality test?
o If N is prime, all witnesses are good (by Fermat's little theorem),
so the test always reports that N may be prime.
@ If N is not prime (and not Carmichael), then

e > 50% of the witnesses are good (by the previous theorem),
and correctly report that N is definitely not prime.

o < 50% of the witnesses are bad,
and wrongly report that N may be prime.

So the Fermat test has a probability of at most 1/2 of being wrong!
Can we reduce this “one-sided” probability?

Fermat primality test

If we repeat the test k times (always picking a at random),
the probability of getting the wrong answer is at most 1/2":

this can be made arbitrarily small!

IA
(SIS
\%
[I

prime? not prime!

IA
(SIS
[

prime? not prime!

N
v
(I

prime? not prime!

Fermat primality test

An implementation using our C library from the previous lesson:

char* random less(char* n)
int bits = num length(n);

char* a = malloc(bits + 1);

for (imt i = 0; 1 < bits; i++) a[i] = rand() % Z2;
a[bits] = -1;

if (compare(a, n) != 1) a = subla, n);

return a;

int test prime (char* n, int k)

char* m = sub(n, one);

for (int i = 0; i < k; i++)
char* a = add(random less(m), one, Z2);
char* e = expM(a, m, n);
if (compare(e, one) != 0) return 0O;

}

return 1;

The running time is O(kn?), where n is the number of bits of V.

Distribution of prime numbers

We now want to generate a prime number of n bits.
How can we do it efficiently?

We need to know something about the distribution of primes:
Theorem: The number of primes < z is asymptotic to =/ In .

If is n bits long, then n ~ log, z.
But Inz <logyz =~ n.
It follows that, among the x numbers of n bits,

at least a fraction of 1/n are primes.

— Prime numbers are abundant!

Prime numbers are everywhere

My lab:

1-67 7UIvs v 3T Bk

Assistant Professor VIGLIETTA, Giovanni

67 is prime

My car’s plate:

B)11580°

1:52 -37

5297 is prime

Today's date in the Japanese calendar: 28/11/1 — 28111 is prime.

In this room, 2-3 people are likely to have a prime phone number.

Randomly generating prime numbers

This suggests a simple method for generating prime numbers:
@ Pick a random number of n significant bits
@ Test if it is prime: if it is, return it
@ Otherwise, repeat from the first step

Randomly generating prime numbers

This suggests a simple method for generating prime numbers:
@ Pick a random number of n significant bits
@ Test if it is prime: if it is, return it
@ Otherwise, repeat from the first step

char* random bits(int bits)
char* a = malloc(bits + 1);
for (int i = 0; i < bits - 1; i++) ali]l = rand() % 2;
albits - 1] = 1;
albits] = -1;
return a;
}

char* generate_prime (int bits, int k)

char® n;
do {

n = random bits(bits);
} while (test_prime(n, k) == 0);

return n;

How efficient is this algorithm? In the worst case, it will
never find a prime! But what about the average case?

Expected running time

We know: a random n-bit number is prime with probability 1/n.

We want: the expected number of times £ we have to pick a
random n-bit number before we find a prime.

Expected running time

We know: a random n-bit number is prime with probability 1/n.

We want: the expected number of times £ we have to pick a
random n-bit number before we find a prime.

1 n—1
n n
prime not prime
Rl E N

After the first extraction, we get a prime with probability 1/n.
Otherwise, we have to perform E more extractions on average.
This yields the equation E =2 -1+ 2=1. (14 E).

Solving for F, we get E = n.

On average, our algorithm runs in O(kn?) - n = O(kn?) time.

Effectiveness of the Fermat test

How good is the Fermat test at finding prime numbers?
As we know, the chance of a false positive is 50% in the worst case.
But on randomly chosen numbers, it is typically much lower!

Even a = 2 is a good witness for the vast majority of numbers:

all numbers < 25-10°

non-primes .| Fermat test
a=2

s> ~ 20,000 non-primes

primes
~ 10% primes

The chance of erroneously outputting a non-prime 36-bit number is
~ 20,000/10% = 0.002%, and it drops rapidly with higher n and k.

Announcements

Next lesson:

December 2 (Mon)—Numerical Algorithms (3): Cryptography
Questionnaire: last 10 minutes. Bring your laptop!

Final exam: December 4 (Wed), 10:50-12:30

