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Goals of today’s lecture

Efficiently test if a (large) number is prime

Use Fermat’s little theorem

Be aware of Carmichael numbers

Learn about randomized algorithms

Efficiently generate (large) prime numbers

Exploit the asymptotic distribution of primes

Correctly estimate the expected running time



Prime numbers

A prime is an integer > 1 that is only divisible by 1 and by itself.

E.g., 2, 3, 5, 7, 11, 13, 17, 19, 23, . . . (there are infinitely many).

Theorem: every positive integer can be written as a product of

prime numbers in a unique way. E.g., 90 = 2 · 3 · 3 · 5.

The safety of modern cryptosystems relies on these facts:

Testing if a (large) number is prime is easy.

Finding a prime factor of a (large) number is hard.

Note: if we search for the factors of a number by dividing it

by all smaller numbers, we do exponentially many divisions!

How can we check if a number is prime without trying to factor it?
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Fermat’s little theorem

In 1640, Pierre de Fermat stated the following:

Theorem: if p is prime and 1 ≤ a < p, then ap−1 ≡ 1 (mod p).



Fermat’s little theorem

Theorem: if p is prime and 1 ≤ a < p, then ap−1 ≡ 1 (mod p).

Proof: if we multiply the numbers 1, 2, . . . , p− 1 by a,

we obtain a permutation of them. Example with a = 3 and p = 7:

1 2 3 64 5

1 2 3 64 5

This is because a and p are relatively prime, so:

a · i ≡ a · j (mod p) =⇒ i ≡ j (mod p)
(hence no two numbers are mapped into the same number)

and a · i ≡ 0 (mod p) =⇒ i ≡ 0 (mod p)
(hence no number is mapped into 0).

So, {1, 2, . . . , p− 1} = {a · 1 mod p, a · 2 mod p, . . . , a · (p− 1) mod p}.
Taking the products, (p− 1)! ≡ ap−1(p− 1)! (mod p).

But (p− 1)! is relatively prime to p, so 1 ≡ ap−1 (mod p).



A possible primality test

This theorem suggests a “factorless” test of primality:

Given a positive integer N

Randomly pick a “witness” a such that 1 ≤ a < N

Compute aN−1 (mod N) (in O(n3) time)

If the result is not 1, return “N is not prime”
(N contradicts Fermat’s little theorem)

Otherwise, return “N may be prime”

Why “may be prime”?
Because Fermat’s little theorem is not an if-and-only-if condition!

There are cases where N is not prime, but aN−1 ≡ 1 (mod N):
if N = 15 = 3 · 5 and a = 4, then 414 ≡ (42)7 ≡ 17 ≡ 1 (mod 15).

Fortunately, if N = 15, all other choices of a witness a > 1
make the test correctly report that 15 is not a prime.

But there are much worse examples...
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Carmichael numbers

There are non-prime numbers N for which every choice of a

(relatively prime to N) makes the test return “N may be prime”.

In 1910, Robert Carmichael found the smallest such number: 561.

Other examples are 1105, 1729, 2465, 2821, 6601, 8911, . . .

Bad news: there are infinitely many “Carmichael numbers”.

Good news: they are very rare, so we may choose to ignore them!



Non-Carmichael numbers

So, our primality test is quite ineffective for Carmichael numbers.
But what about all other numbers, which are the vast majority?

For a non-prime and non-Carmichael number N , there is at least

a witness a relatively prime to N such that aN−1 6≡ 1 (mod N).

We call a a “good witness”, because it makes the test correctly
report that N is not a prime. What about the other witnesses?

Theorem: if there is a good witness a relatively prime to N
(i.e., if N is non-Carmichael), then at least half the witnesses are good.

Proof: every bad witness b has a good “twin” a · b:

(a · b)N−1 ≡ aN−1 · bN−1 ≡ aN−1 · 1 ≡ aN−1 6≡ 1 (mod N).

And none of these twins are the same: if b and b′ are bad witnesses,

then a · b ≡ a · b′ (mod N) =⇒ b ≡ b′ (mod N).

So, there are at least as many good witnesses as bad witnesses.
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Fermat primality test

bad witnesses good witnesses

b b·a

a

What are the consequences on our primality test?

If N is prime, all witnesses are good (by Fermat’s little theorem),
so the test always reports that N may be prime.

If N is not prime (and not Carmichael), then

≥ 50% of the witnesses are good (by the previous theorem),
and correctly report that N is definitely not prime.

≤ 50% of the witnesses are bad,
and wrongly report that N may be prime.

So the Fermat test has a probability of at most 1/2 of being wrong!
Can we reduce this “one-sided” probability?



Fermat primality test

If we repeat the test k times (always picking a at random),

the probability of getting the wrong answer is at most 1/2k:

this can be made arbitrarily small!
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Fermat primality test

An implementation using our C library from the previous lesson:

The running time is O(kn3), where n is the number of bits of N .



Distribution of prime numbers

We now want to generate a prime number of n bits.

How can we do it efficiently?

We need to know something about the distribution of primes:

Theorem: The number of primes ≤ x is asymptotic to x/ lnx.

If x is n bits long, then n ≈ log2 x.

But lnx < log2 x ≈ n.

It follows that, among the x numbers of n bits,

at least a fraction of 1/n are primes.

→ Prime numbers are abundant!



Prime numbers are everywhere

My lab:

67 is prime

My car’s plate:

5297 is prime

Today’s date in the Japanese calendar: 28/11/1 → 28111 is prime.

In this room, 2–3 people are likely to have a prime phone number.



Randomly generating prime numbers

This suggests a simple method for generating prime numbers:

Pick a random number of n significant bits

Test if it is prime: if it is, return it

Otherwise, repeat from the first step

How efficient is this algorithm? In the worst case, it will
never find a prime! But what about the average case?
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Expected running time

We know: a random n-bit number is prime with probability 1/n.

We want: the expected number of times E we have to pick a
random n-bit number before we find a prime.

prime not prime

n
1

n
1−n

E

1

After the first extraction, we get a prime with probability 1/n.

Otherwise, we have to perform E more extractions on average.

This yields the equation E = 1
n · 1 + n−1

n · (1 + E).

Solving for E, we get E = n.

On average, our algorithm runs in O(kn3) · n = O(kn4) time.
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Effectiveness of the Fermat test

How good is the Fermat test at finding prime numbers?

As we know, the chance of a false positive is 50% in the worst case.

But on randomly chosen numbers, it is typically much lower!

Even a = 2 is a good witness for the vast majority of numbers:

non-primes

primes

Fermat test
= 2a

not prime

prim
e?

all numbers 910·25≤

910≈
000,20≈ non-primes

primes

The chance of erroneously outputting a non-prime 36-bit number is

≈ 20,000/109 = 0.002%, and it drops rapidly with higher n and k.



Announcements

Next lesson:

December 2 (Mon)—Numerical Algorithms (3): Cryptography

Questionnaire: last 10 minutes. Bring your laptop!

Final exam: December 4 (Wed), 10:50–12:30


