
Lesson 12. Numerical Algorithms (1):
Basic Arithmetic Operations

I111E – Algorithms and Data Structures

Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp

JAIST – November 27, 2019

All material is available at
www.jaist.ac.jp/˜uehara/course/2019/i111e

uehara@jaist.ac.jp
johnny@jaist.ac.jp
www.jaist.ac.jp/~uehara/course/2019/i111e


Topics of today’s lecture

Representation of arbitrarily large integers

Arithmetic operations with large integers

Addition

Subtraction

Multiplication

Integer division (quotient and remainder)

Modular operations with large integers

Modular addition

Modular subtraction

Modular multiplication

Modular exponentiation

Euclid’s algorithm for greatest common divisor

Extended Euclid’s algorithm for modular division



Modular arithmetic for cryptography

We will see two applications of modular arithmetic:

Finding large prime numbers efficiently (next lesson)

Public-key cryptography, e.g., RSA (in two lessons)

The security of modern cryptosystems relies on these facts:

Modular exponentiation is easy (today’s lesson)

Computing modular logarithms is hard

Checking if a number is prime is easy (next lesson)

Finding the prime factors of a number is hard



Representing large integers

The standard C types have fixed size: for instance, an int variable

can typically store numbers from −2,147,483,648 to 2,147,483,647.

We want to work with much larger (unboundedly large) integers!

Idea: represent an integer as an array of (binary) digits,

terminating with −1.

38 (2)100110

0 1 1 0 0 1 1−

Notice that less significant bits come first.

(We will see why this is a good choice...)



Representing large integers

Note that the size of a number is not its value,

but the number of (binary) digits needed to represent it.



Comparing large integers

To compare two numbers, we compare their digits in order,

starting from the most significant ones:

<

>

0 1 0 0 0 1 1−

0 1 1 0 0 1 1−



Comparing large integers

Our function returns 1 if a < b, 0 if a = b, and −1 if a > b.

The algorithm runs in O(n) time.

This is optimal, because to compare two numbers we need at least

to read their digits (which already takes linear time).



Addition

To add two numbers, we can use the grade-school algorithm:

1 0 1 0 1 1 1−

1 1 0 0 0 1 1−

0 0 0 1 1 0 1−1

+

=

carry 1 1 1 1

If the numbers have size n, the result has size at most n+ 1.



Addition

The algorithm runs in O(n) time (optimal).



Subtraction

Again, we use the grade-school algorithm:

1 0 0 1 1 1 1−

1 1 0 0 0 1 1−

0 1 1 0 1 1−=

borrow 1 1

−

For our purposes, we may assume that the first number

is always greater than the second.

So we do not have to deal with negative numbers.



Subtraction

The algorithm runs in O(n) time (optimal).



Multiplication

For multiplication, we use an idea by Al-Khwarizmi:

a · b =
{

(a · bb/2c) · 2 if b is even

(a · bb/2c) · 2 + a if b is odd

So we can first compute a · bb/2c recursively,

and then compute a · b by the formula above.

Note: the following operations can be performed in constant time

bb/2c can be computed as b+1, where b is an array of bits.

The parity of b can be checked by evaluating b[0].

This is why we chose to put the least significant digits first!



Multiplication

For multiplication, we use an idea by Al-Khwarizmi:

a · b =
{

(a · bb/2c) · 2 if b is even

(a · bb/2c) · 2 + a if b is odd

So we can first compute a · bb/2c recursively,

and then compute a · b by the formula above.

Note: the following operations can be performed in constant time

bb/2c can be computed as b+1, where b is an array of bits.

The parity of b can be checked by evaluating b[0].

This is why we chose to put the least significant digits first!



Multiplication

The algorithm runs in O(n2) time.

This is not optimal, but it is sufficiently fast for our purposes.

Note: by executing c = add(c, c, 2) without calling

free(c), we are causing a “memory leak” (the area of memory

originally pointed by c is never returned to the operating system).

Since resolving memory leaks would make our code much more

cumbersome, we chose to ignore this issue in our exposition.



Multiplication

The algorithm runs in O(n2) time.

This is not optimal, but it is sufficiently fast for our purposes.

Note: by executing c = add(c, c, 2) without calling

free(c), we are causing a “memory leak” (the area of memory

originally pointed by c is never returned to the operating system).

Since resolving memory leaks would make our code much more

cumbersome, we chose to ignore this issue in our exposition.



Integer division

To divide two integers a and b 6= 0 means to find a quotient q

and a remainder r such that 0 ≤ r < b and a = b · q + r.

Once again we can apply recursion if we first divide ba/2c by b:

ba/2c = b · q′ + r′.

Now we can write a as:

a =

{
(b · q′ + r′) · 2 = b · (2q′) + (2r′) if a is even

(b · q′ + r′) · 2 + 1 = b · (2q′) + (2r′ + 1) if a is odd

So we have found our q = 2q′ and r = 2r′ or 2r′ + 1.

We only need to check if r ≥ b, in which case we have to

decrease r by b and increase q by 1.



Integer division

The algorithm runs in O(n2) time.



Base conversion

To print numbers in a legible way, we need to convert them

from base 2 to base 10:



Modular arithmetic

A system for dealing with restricted ranges of integers.

“a modulo m” = the remainder when a is divided by m.

In modular arithmetic, we identify all the integers

that are the same modulo m:

-4 -3 -2 -1 0 1 2 3 4 5 (mod 3). . .. . .

E.g., 1 ≡ 4 (mod 3), −3 ≡ 3 (mod 3), 2 6≡ 4 (mod 3)

Formally, a ≡ b (mod m) (“a is congruent to b modulo m”)

means that there exists an integer k such that a− b = km.



Cancellation rules of modular arithmetic

Sometimes a congruence can be simplified:

d · a ≡ d · b (mod d ·m) =⇒ a ≡ b (mod m)

Proof: da ≡ db (mod dm) =⇒ da− db = k · dm
=⇒ d(a− b) = dkm =⇒ a− b = km =⇒ a ≡ b (mod m)

If d and m have no common prime factors, then

d · a ≡ d · b (mod m) =⇒ a ≡ b (mod m)

Proof: da ≡ db (mod m) =⇒ d(a− b) = km

Since d and m are relatively prime, k must be a multiple of d.

d(a− b) = k′dm =⇒ a− b = k′m =⇒ a ≡ b (mod m)

The second cancellation rule may not work if d and m are not

relatively prime: e.g., 2 ≡ 6 (mod 4), but 1 6≡ 3 (mod 4).



Cancellation rules of modular arithmetic

Sometimes a congruence can be simplified:

d · a ≡ d · b (mod d ·m) =⇒ a ≡ b (mod m)

Proof: da ≡ db (mod dm) =⇒ da− db = k · dm
=⇒ d(a− b) = dkm =⇒ a− b = km =⇒ a ≡ b (mod m)

If d and m have no common prime factors, then

d · a ≡ d · b (mod m) =⇒ a ≡ b (mod m)

Proof: da ≡ db (mod m) =⇒ d(a− b) = km

Since d and m are relatively prime, k must be a multiple of d.

d(a− b) = k′dm =⇒ a− b = k′m =⇒ a ≡ b (mod m)

The second cancellation rule may not work if d and m are not

relatively prime: e.g., 2 ≡ 6 (mod 4), but 1 6≡ 3 (mod 4).



Cancellation rules of modular arithmetic

Sometimes a congruence can be simplified:

d · a ≡ d · b (mod d ·m) =⇒ a ≡ b (mod m)

Proof: da ≡ db (mod dm) =⇒ da− db = k · dm
=⇒ d(a− b) = dkm =⇒ a− b = km =⇒ a ≡ b (mod m)

If d and m have no common prime factors, then

d · a ≡ d · b (mod m) =⇒ a ≡ b (mod m)

Proof: da ≡ db (mod m) =⇒ d(a− b) = km

Since d and m are relatively prime, k must be a multiple of d.

d(a− b) = k′dm =⇒ a− b = k′m =⇒ a ≡ b (mod m)

The second cancellation rule may not work if d and m are not

relatively prime: e.g., 2 ≡ 6 (mod 4), but 1 6≡ 3 (mod 4).



Modular addition, subtraction, and multiplication

To get modular addition, subtraction, and multiplication,
we slightly modify the non-modular ones to make sure that
the result is between 0 and m− 1:

The running times are the same as their non-modular counterparts.



Modular exponentiation

For modular exponentiation, we use the same idea of multiplication:

ab =

{ (
abb/2c

)2
if b is even(

abb/2c
)2 · a if b is odd

To prevent our intermediate results from growing too much,

we use modular multiplication at every step.

The running time is O(n3).



Modular exponentiation

For modular exponentiation, we use the same idea of multiplication:

ab =

{ (
abb/2c

)2
if b is even(

abb/2c
)2 · a if b is odd

To prevent our intermediate results from growing too much,

we use modular multiplication at every step.

The running time is O(n3).



Euclid’s algorithm

What about modular division? It turns out that dividing in modular

arithmetic has a lot to do with finding greatest common divisors.

gcd(a, b) = the largest integer that divides both a and b.

Euclid’s rule: if a ≥ b, then gcd(a, b) = gcd(a mod b, b).

Proof:

a

b
bmoda

)a, bgcd(



Euclid’s algorithm

What about modular division? It turns out that dividing in modular

arithmetic has a lot to do with finding greatest common divisors.

gcd(a, b) = the largest integer that divides both a and b.

Euclid’s rule: if a ≥ b, then gcd(a, b) = gcd(a mod b, b).

Proof:

a

b
bmoda

)a, bgcd(



Euclid’s algorithm

To compute the running time, observe that a mod b < a/2.

Proof: either b ≤ a/2 (top figure) or b > a/2 (bottom figure).

ab

bmoda

2a/

ab

bmoda

2a/

Since the largest argument is halved at each iteration,

it follows that the number of iterations is O(n).

The total running time is therefore O(n3).



Modular inverse

In real arithmetic, dividing something by a is the same as

multiplying it by its inverse, 1/a.

The inverse of a is the number a′ such that a · a′ = 1.

We can extend this definition to the arithmetic modulo m:

the inverse of a is some number a′ such that a · a′ ≡ 1 (mod m).

The inverse of a may not exist: 4 modulo 6 has no inverse,

because every multiple of 4 is an even number modulo 6.

If a and m are not relatively prime, a has no inverse mod. m.

When it exists, the inverse of a is unique modulo m.

→ If a′ and a′′ are inverses of a, then aa′ ≡ aa′′ (mod m).

But a and m must be relatively prime, so a′ ≡ a′′ (mod m).

What if a and m are relatively prime?

Does a always have an inverse? If so, how do we compute it?

→ The answer is given by Euclid’s algorithm!



Modular inverse

In real arithmetic, dividing something by a is the same as

multiplying it by its inverse, 1/a.

The inverse of a is the number a′ such that a · a′ = 1.

We can extend this definition to the arithmetic modulo m:

the inverse of a is some number a′ such that a · a′ ≡ 1 (mod m).

The inverse of a may not exist: 4 modulo 6 has no inverse,

because every multiple of 4 is an even number modulo 6.

If a and m are not relatively prime, a has no inverse mod. m.

When it exists, the inverse of a is unique modulo m.

→ If a′ and a′′ are inverses of a, then aa′ ≡ aa′′ (mod m).

But a and m must be relatively prime, so a′ ≡ a′′ (mod m).

What if a and m are relatively prime?

Does a always have an inverse? If so, how do we compute it?

→ The answer is given by Euclid’s algorithm!



Modular inverse

In real arithmetic, dividing something by a is the same as

multiplying it by its inverse, 1/a.

The inverse of a is the number a′ such that a · a′ = 1.

We can extend this definition to the arithmetic modulo m:

the inverse of a is some number a′ such that a · a′ ≡ 1 (mod m).

The inverse of a may not exist: 4 modulo 6 has no inverse,

because every multiple of 4 is an even number modulo 6.

If a and m are not relatively prime, a has no inverse mod. m.

When it exists, the inverse of a is unique modulo m.

→ If a′ and a′′ are inverses of a, then aa′ ≡ aa′′ (mod m).

But a and m must be relatively prime, so a′ ≡ a′′ (mod m).

What if a and m are relatively prime?

Does a always have an inverse? If so, how do we compute it?

→ The answer is given by Euclid’s algorithm!



Modular inverse

In real arithmetic, dividing something by a is the same as

multiplying it by its inverse, 1/a.

The inverse of a is the number a′ such that a · a′ = 1.

We can extend this definition to the arithmetic modulo m:

the inverse of a is some number a′ such that a · a′ ≡ 1 (mod m).

The inverse of a may not exist: 4 modulo 6 has no inverse,

because every multiple of 4 is an even number modulo 6.

If a and m are not relatively prime, a has no inverse mod. m.

When it exists, the inverse of a is unique modulo m.

→ If a′ and a′′ are inverses of a, then aa′ ≡ aa′′ (mod m).

But a and m must be relatively prime, so a′ ≡ a′′ (mod m).

What if a and m are relatively prime?

Does a always have an inverse? If so, how do we compute it?

→ The answer is given by Euclid’s algorithm!



Extended Euclid’s algorithm

Let a be relatively prime with the modulus m, i.e., gcd(a,m) = 1.

We want an a′ such that aa′ ≡ 1 (mod m).

That is, we want two numbers a′ and k such that aa′ − km = 1.

In other words, we want to express the gcd of a and m

as a linear combination of a and m.

→ We can do it in general, by extending Euclid’s algorithm to

compute two coefficients x and y such that ax+ by = gcd(a, b).



Extended Euclid’s algorithm

Claim: it is possible to extend Euclid’s algorithm to

compute two coefficients x and y such that ax+ by = gcd(a, b).

Proof: by induction on b. If b = 0, we know gcd(a, b) = a,

and we may choose x = 1 and y = 0 as coefficients.

Otherwise, assume the recursive call with arguments

b and a mod b correctly returned x′ and y′ such that

bx′ + (a mod b)y′ = gcd(b, a mod b) = gcd(a, b).

By definition of integer division, a = ba/bc · b+ (a mod b).

Substituting (a− ba/bc · b) for (a mod b), we get

bx′ + (a− ba/bc · b)y′ = ay′ + b(x′ − ba/bc · y′) = gcd(a, b).

So we can set x = y′ and y = x′ − ba/bc · y′.



Extended Euclid’s algorithm

We can do all computations modulo m,
so we do not have to deal with negative coefficients.

The extended Euclid’s algorithm still runs in O(n3) time.



Modular division

We can now use the extended Euclid’s algorithm to compute the

modular inverse of a number, and use the modular inverse

(when it exists) to compute modular division.

Both algorithms run in O(n3) time.



What’s the point??

Question:

We started by re-implementing the arithmetic operations from

scratch, because we wanted to work with arbitrarily large integers...

But now, with modular arithmetic, we are restricting ourselves to a

limited range of integers again! What was the point of introducing

large integers, then?

Answer:

Modern cryptosystems that are based on modular arithmetic

use very large moduli (thousands of bits long): the larger the

modulus, the safer the system! So, even though the range of

integers that we use in cryptography is limited by the modulus,

it is still much larger than any standard C variable can handle.



What’s the point??

Question:

We started by re-implementing the arithmetic operations from

scratch, because we wanted to work with arbitrarily large integers...

But now, with modular arithmetic, we are restricting ourselves to a

limited range of integers again! What was the point of introducing

large integers, then?

Answer:

Modern cryptosystems that are based on modular arithmetic

use very large moduli (thousands of bits long): the larger the

modulus, the safer the system! So, even though the range of

integers that we use in cryptography is limited by the modulus,

it is still much larger than any standard C variable can handle.


