
I111E Algorithms & Data Structures
6. Data structure (2)

Stack, Queue, and Heap

1

School of Information Science
Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp

2019-11-06

All materials are available at
http://www.jaist.ac.jp/~uehara/couse/2019/i111e

C Version

mailto:uehara@jaist.ac.jp
mailto:uehara@jaist.ac.jp

Announcement
• 1st report: deadline is November 11, 10:50am.
• Mid term examination (30pts):

– November 11, 13:30-15:10
– Range: Up to Today!
– Choices are;

• Anything without electricity (w/o cell/ipad/...)
• Textbooks, copy of slides, and hand written notes
• Copy of slides, and hand written notes
• Only pens and pencils

Short Summary So Far
• We have combinations of 3 issues; data structure, what

to do, and algorithm
• What to do: E.g., access to the i-th item, search,

add/remove/insert
• Array: access in O(1), search in O(n), add tail in O(1),

insert/remove in O(n)
• Array in order: search in O(log n), etc.
• Linked list: access in O(n), add/remove in O(1), etc.

• Today’s topic: Three abstract data structures for
addition and take out

Representative data structures
• Stack: The last added item will be took the

first (LIFO: Last in, first out)
• Queue: The first added item will be took the

first (FIFO: first in, first out)
• Heap: The smallest item will be took from the

stored data

• Implementation of concrete data structures
like array and linked list.

STACK

• What “Stack” is?
• Implementation by array
• Implementation by linked list

Stack

• The structure that the last data will be
popped first (LIFO: Last in, first out)

• Image: “stack” of dishes, …
• Operations

– push: add new data into stack
– pop: take the data from stack

• Pointer
– top: top element in the stack

(where the next item is put)

stack

push 3;
push 4;
push 5;
pop;
pop;
push 6;
pop;

3
4
5
6

 5
 4

 6

top

Implementation of stack by an array
• Store a data: push(x)

• Take the data: pop()

• What kind of errors?
– Overflow: push (x) when top == size(stack)
– Underflow: pop() when top == 0

stack[top]=x;
top=top+1;

top=top-1;
return stack[top];

Store the place for the “next” one
Increment the “next” place

Decrement the “next” place
Return the current one

class Stack {
private int[] data;
private int top;
public Stack (int maxsize) {

data = new int[maxsize];
top=0;

}

public void push(int x) {
if (top < data.Length) {

data[top] = x;
top ++;

} else {
System.Console.WriteLine("overflow");

}
}

public int pop() {
if (top > 0) {

top --;
return data[top];

} else {
System.Console.WriteLine("underflow");
return -1;

}
}

public void print() {
for (int i=0; i<top; i++) {

System.Console.Write(data[i]+" ");
}
System.Console.WriteLine(" top <- "+top);

}
}

Implementation of stack by an array
public class i111_06_p7 {

public static void Main () {
Stack st = new Stack(6);
st.push(3);
st.print();
st.push(4);
st.print();
st.push(5);
st.print();
System.Console.WriteLine("pop="+st.pop());
st.print();

}
}

Initialization

Display for check

Make it of size 6

Output the result of pop
Exercise: Resize the array
when it overflows

class Node {
public int data;
public Node next;
public Node(int i, Node n) {

this.data = i;
this.next = n;

}
}

class StackLL {
private Node top;

public StackLL () {
top=null;

}

public void push(int x) {
Node n = new Node(x, top);
top = n;

}

public int pop() {
if (top != null) {

int topvalue = top.data;
top = top.next;
return topvalue;

} else {
System.Console.WriteLine("underflow");
return -1;

}
}

public void print() {
Node n = top;
while (n != null) {

System.Console.Write(n.data+" ");
n = n.next;

}
System.Console.WriteLine(" top -> ");

}
}

Implementation of stack by a linked list
public class i111_06_p8 {

public static void Main () {
StackLL st = new StackLL();
st.push(3);
st.print();
st.push(4);
st.print();
st.push(5);
st.print();
System.Console.WriteLine("pop="+st.pop());
st.print();

}
}

Top node

Size is not needed

No need to check overflow

QUEUE
“Queue” means “(waiting) line”

• The first data will be took first
(FIFO: first in, first out)

• Image: In front of famous restaurant

Array 0 1 2 3 4 MAXSIZE-1
queue 35 29 87

pick head tail Store a data
the data

Data are stored in from queue[head+1] to queue[tail]

You may feel it is not intuitive since it is not
from queue[head] to queue[tail]…

Queue

ｘ：data
queue

head tail
last out last in

void append(int x){
tail = tail + 1;
queue[tail] = x;

}

Simple implementation of queue by
an array: Add a data

Move to the place to put
(and place put the last)

Data taken

head tail
last out last in

queue

int get(){
head = head + 1;
return queue[head];

}

Simple implementation of queue by
an array: Take a data

Move to the place to be taken
(and place taken the last)

Problem of simple implementation of queue:
Waste area…

• What happens when we
use queue as follows?

void append(int x){
tail = tail + 1;
queue[tail] = x;

}

int get(){
head = head + 1;
return queue[head];

}
int queue[MAX_SIZE];
int head, tail;
void main(){

head=0; tail=0;
append(3); get();
append(4); get();

}

append(3) 3

head

tail
get()append(4) 4

We won’t usewaste

headtailhead tail tail

tail

head

head

void append(int x){
tail = (tail + 1) % MAXSIZE;
queue[tail] = x;

}
int get(){

head = (head + 1) % MAXSIZE;
return queue[head];

}

Solution: Use array cyclic

Return to 0

Return to 0

When it is full;

t h head==tail

When it is empty;

h t head==tail

Problem of queue in cyclic array:
We cannot distinguish between full and empty

In both cases, we have head==tail.
We may count the number, but it is not a good situation to be full…

get()

append

void append(int x){
tail = (tail + 1) % MAXSIZE;
queue[tail] = x;
if(tail == head) printf("Queue Overflow ");

}
int get(int x){

if(tail == head) printf("Queue is empty ");
else {

head = (head + 1) % MAXSIZE;
return queue[head];

}
}

Solution: We define full when
we have tail==head when append.

class Queue {
private int[] queue;
private int head;
private int tail;
public Queue (int maxsize) {

queue = new int[maxsize];
head = 0;
tail = 0;

}

public void append(int x) {
tail = (tail +1) % queue.Length;
queue[tail] = x;
if (tail == head) {

System.Console.WriteLine("overflow");
}

}

public int get() {
if (tail == head) {

System.Console.WriteLine("underflow");
return -1;

}
head = (head + 1) % queue.Length;
//int t=queue[head]; queue[head]=0; return t;
return queue[head];

}

public void print() {
for (int i=0; i<queue.Length; i++) {

System.Console.Write(queue[i]+" ");
}
System.Console.WriteLine("h"+head+" t"+tail);

}
}

Implementation of Queue in C#
public class i111_06_p16 {

public static void Main () {
Queue qu = new Queue(3);
qu.append(3); qu.print();
qu.append(4); qu.print();
System.Console.WriteLine("get="+qu.get());
qu.print();
qu.append(5); qu.print();
System.Console.WriteLine("get="+qu.get());
qu.print();
qu.append(6); qu.print();

}
}

It is better to initialize by -1

full!!

Make it size 3

Output result by get
empty!!

※Erase the taken data

Insertion of a data：From tail of the list: pointer tail
Take a data：From top of the list: pointer head

head

tail
head

tail

x

Take a data Insert a data

Implementation of queue by linked list

Exercise: Make program by yourself!

class QueueLL {
private Node head;
private Node tail;
public QueueLL () {

head = null;
tail = null;

}

public void append(int x) {
Node n = new Node(x,null);
if (head == null) {

head = n;
} else {

tail.next = n;
}
tail = n;

}

public int get() {
if (head == null) {

System.Console.WriteLine("underflow");
return -1;

}
int headValue = head.data;
head = head.next;
return headValue;

}
public void print() {

Node n = head;
while (n != null) {

System.Console.Write(n.data+" ");
n = n.next;

}
System.Console.WriteLine(" head -> tail");

}
}

Implementation of Queue in C#
public class i111_06_p18 {

public static void Main () {
QueueLL qu = new QueueLL();
qu.append(3); qu.print();
qu.append(4); qu.print();
System.Console.WriteLine("get="+qu.get());
qu.print();
qu.append(5); qu.print();
System.Console.WriteLine("get="+qu.get());
qu.print();
qu.append(6); qu.print();

}
}

Try to take data from empty

class Node {
public int data;
public Node next;
public Node(int i, Node n) {

this.data = i;
this.next = n;

}
}

Size is not needed

Ex: What happens?

HEAP

• “heap” also means “stack”, but more “mountain”-like shape?
• Simple implementation by array
• Implementation by array using an idea of binary tree

Heap

• Add/remove data
• Elements can be taken from minimum

(or maximum) in order

Implement of heap (1):
Simple implement by array

An array heap[] and top,
the number of data
• Initialize: top = 0
• Insert data:

heap[top] = x;
top = top + 1;

• Take minimum one:
Find the minimum element
heap[m] in heap[] and
output. Then copy
heap[top-1] to
heap[m], and decrease top
by 1.

0 1 2 m top
heap

Minimum element

m = 0;
for(i=1; i<top; i++)
if(heap[i] < heap[m])

m = i;
x = heap[m];
heap[m] = heap[top-1];
top = top - 1;
return x;

Problem of simple implementation:
Slow for reading data

• Store: O(1) time

• Take: O(n) time
m = 0;
for(i=1; i<top; i++)

if(heap[i] < heap[m])
m = i;

x = heap[m];
heap[m] = heap[top-1];
top = top - 1;
return x;

heap[top++]=x ← As same as
heap[top] = x;
top = top + 1;
in C

root
18 level 0

parent
25 33 level 1

child edge
26 31 35 42 level 2

node
28 29 level 3

leaf

root：node that has no parent
leaf：node that has no child

A tree is called a binary tree
if each node has at most 2 children

“level” is the
distance (# of edges)
from the root

Implementation of heap by binary tree
【Important】 【Note: different from binary search tree!】

1. Assign 1 to the root.
2. For a node of number i, assign 2×i to the left child and assign

2×i+1 to the right child:

3. No nodes assigned by the number greater than n.
4. For each edge, parent stores data smaller than one in child.

i

2×i 2×i+1

Each node has a unique path from the root, and its length is O(log n).

Property of binary tree for heap

※Some textbooks prefer to start from 0 instead of 1. In this case,
considering children as 2i+1 and 2i+2, we have the same structure.

10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 22 9

1 2 3 4 5 6 7 8 9
10 13 11 15 14 12 18 21 22

We can use an array, instead of linked list!

Example of a heap by binary tree

1. Assign 1 to the root.
2. For a node of number i, assign

2×i to the left child and assign
2×i+1 to the right child.

3. No nodes assigned by the
number greater than n.

4. For each edge, parent stores
data smaller than one in child.

(1) temporally, add data to node n+1 (n+1st element in array)
(2) traverse to the root step by step, and

if parent > child then swap parent and child

10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 9 22 8 10

8 1

10 2 11 3

15 4 13 5 12 6 18 7

21 8 9 22 14 10

That is, from n+1st node to the root, the data are in order. This
algorithm does not occur any problem with any other part of tree.

Add a data to heap

Exercise:
Why does this
algorithm has
consistency?

void pushHeap(int x){
int i, j;
if(++n >= MAXSIZE)

stop("Heap Overflow");
else{

heap[n] = x;
i=n; j=i/2;
while(j>0 && x < heap[j]){

heap[i] = heap[j];
i=j; j=i/2;

}
heap[i] = x;

}
}

Program for adding a data to heap
10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 9 22 8 10

8 1

10 2 11 3

15 4 13 5 12 6 18 7

21 8 9 22 14 10

(1) Take the minimum data at the root
(2) Copy the last item (of number n) to the root
(3) Traverse from the root to a leaf as follows

For each pair of two children, choose the smaller one,
and exchange parent and child if child is smaller than parent.

10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 22 9

11 1

13 2 12 3

15 4 14 5 22 6 18 7

21 8

Minimum data

Heap: Take the minimum item

Program for removing the smallest
item from heap

int* deleteMin(int *heap, int n){
int x, i, j, t;
if(n == 0) stop("Heap Underflow");
else{

heap[1]=heap[n--];
for(i=1;i*2<=n;i=j){

j=i*2;
if(j+1<=n && heap[j]>heap[j+1]) j=j+1;
if(heap[i]<=heap[j]) break;
else {

t=heap[i]; heap[i]=heap[j]; heap[j]=t;
}

}}
return heap;}

10 1

13 2 11 3

15 4 14 5 12 6 18 7

21 8 22 9

Node i has child &&
right child may be smaller

Smaller than child

Swap parent (i) and child (j)

11 1

13 2 12 3

15 4 14 5 22 6 18 7

21 8

Time complexity of binary heap

• Let n be the size of heap
– Addition: O(log n)
– Removal: O(log n)

• Each operation runs in time
proportional to the depth of the heap

• The depth of heap is almost log n

Summary
• Stack: Structure that the last data will be popped

first (LIFO: Last in, first out)
• Queue: The first data will be took first

(FIFO: first in, first out)
• Heap: Elements are taken from minimum in order

• Implemented by array/linked list
• Heap is efficient by using binary tree
Q: How about heap by linked list?

Announcement
• 1st report: deadline is November 11, 10:50am.
• Mid term examination (30pts):

– November 11, 13:30-15:10
– Range: Up to Today!
– Choices are;

• Anything without electricity (w/o cell/ipad/...)
• Textbooks, copy of slides, and hand written notes
• Copy of slides, and hand written notes
• Only pens and pencils

	I111E Algorithms & Data Structures�6. Data structure (2)� Stack, Queue, and Heap
	Announcement
	Short Summary So Far
	Representative data structures
	stack
	Stack
	Implementation of stack by an array
	Implementation of stack by an array
	Implementation of stack by a linked list
	queue
	Queue
	Simple implementation of queue by �an array: Add a data
	Simple implementation of queue by �an array: Take a data
	Problem of simple implementation of queue:�Waste area…
	Solution: Use array cyclic
	Problem of queue in cyclic array:�We cannot distinguish between full and empty
	Solution: We define full when �we have tail==head when append.
	Implementation of Queue in C#
	Implementation of queue by linked list
	Implementation of Queue in C#
	heap
	Heap
	Implement of heap (1):�Simple implement by array
	Problem of simple implementation:�Slow for reading data
	Implementation of heap by binary tree
	Property of binary tree for heap
	Example of a heap by binary tree
	Add a data to heap
	Program for adding a data to heap
	Heap: Take the minimum item
	Program for removing the smallest item from heap
	Time complexity of binary heap
	Summary
	Announcement

