I111E Algorithms \& Data Structures 3. Basic Programming

School of Information Science Ryuhei Uehara \& Giovanni Viglietta uehara@jaist.ac.jp \& johnny@jaist.ac.jp 2019-10-23

All materials are available at http://www.jaist.ac.jp/~uehara/couse/2019/i111e

Main topic:

SEARCH PROBLEM

Search Problem

- Problem: S is a given set of data. For any given data x, determine efficiently if S contains x or not.
- Efficiency: Estimate the time complexity by $n=$ $|S|$, the size of the set S
- In this problem, "checking every data in S " is enough, and this gives us an upper bound $\mathrm{O}(n)$ in the worst case.
- Can we do better?
- How about dictionary?

Roughly, "the running time is proportional to n."

How to tackle the problem

- Consider data structure and how to store data
- Data are in an array in any ordering
- Data are in an array in increasing order
- Search algorithm: The way of searching
- Sequential search
- m-block method
- Double m-block method

We introduce these methods to explain our naïve idea.

- Binary search
- Analysis of efficiency
- (Big-O notation)

Data structure 1

Data are stored in arbitrary ordering

- Each element in the set S is stored in an array s from $s[0]$ to $s[n-1]$ in any arbitrary ordering.

$s[]=$| 37 | 12 | 25 | 9 | 87 | 33 | 65 | 3 | 29 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sequential search

- Input: any natural number x
- Output:
- If there is i such that $\mathrm{s}[\mathrm{i}]==x$, output i
- Otherwise, output -1 (for simplicity)

```
for (i=0; i<n; ++i)
    if(x==s[i]) return i;
return -1;
```

In the worst case, we need n comparisons.
Thus, the running time is proportional to n.
$\rightarrow \mathrm{O}(n)$ time algorithm

Example: Real code of seq. search

```
public class i111_03_p7{
public static void Main(){
    int[] data = new int[]{37,12,25,9,87,33,65,3,29};
    int len = data.Length;
    int target = 87;
    int result = find(target,len,data);
    if (result == -1) {
    System.Console.WriteLine(target+" not found");
    } else {
    System.Console.WriteLine(target+" is at index "+result);
    }
}
static int find(int x, int n, int[] s) {
    for (int i=0; i<n; i++) {
        System.Console.Write(i+" ");
        if (x==s[i]) return i;
    }
    return -1;
}
```


Precise time complexity of sequential search

- At most $3 n+2$ steps

Programming tips 1:

simplify by using "sentinel"

Before searching, push x itself at the end of the array; Then you definitely have $x==s$ [i] for some $0<=i<=n$ So you do not need the check $\mathrm{i}<\mathrm{n}$ any more.

Analysis of the number of comparisons

Consider best/worst/average cases

- The best case: 1
- when $\mathrm{s}[0]==\mathrm{x}$
- The worst case: n
- when x is not in $s[0] \ldots . . .[n-1]$
- The average case : $\sum_{i=1}^{n+1} \frac{i}{n}=\frac{n+2}{2}$

$$
\begin{aligned}
& s[n]=x ; \\
& i=0 ; \\
& \text { while }(x!=s[i]) \\
& \quad \text { i }=i+1 ; \\
& i f(i<n) \\
& \quad \text { return } i ; \\
& \text { else } \\
& \quad \text { return }-1 ;
\end{aligned}
$$

- The expected value of \# of comparisons
- The i-th element is compared with probability $1 / n$
- The number of comparisons when x is equal to the i-th element is i.
※average is close to n when we often have the case that x is not in data ※It depends on the situation that which case is important

What happens if we use
 "nice" data structure?

Data structure 2

Data in the array in increasing order

We don't consider how can we do now

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- $\mathrm{Q}:$ Any improvement in sequential algorithm?

Idea

```
s[n]=x; We can stop when s[i] is
i = 0;
while(x!=s[i])
    i = i+1;
if(i < n) return i;
else return -1;
```


Data structure 2

Data in the array in increasing order

We don't consider how can we do now

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- $\mathrm{Q}:$ Any improvement in sequential algorithm?

Idea

```
s[n]=x; We can stop when s[i] is
i = 0; It does not happen over x!
while(s[i]<x)
    i = i+1;
if(i < n) return i;
else return -1;
```


Data structure 2

Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Q: Any improvement in sequential algorithm?

$$
\begin{aligned}
& \text { s[n]=x; } \\
& \text { i = 0; } \\
& \text { while(s[i]<x) } \\
& \text { i = i+1; } \\
& \text { if(i < n) return i; } \\
& \text { else return -1; } \\
& \text { Look! }
\end{aligned}
$$

We can stop when $s[i]$ is greater than x $x!=s[i] \Rightarrow x>s[i]$

It may stop even if i<n $\mathrm{i}<n \rightarrow \mathrm{~s}[\mathrm{i}]=\mathrm{x}$
E.g, if $x=30$, we have $i<n(5<9)$

Data structure 2

Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
- Q: Any improvement in sequential algorithm?

$$
\begin{aligned}
& s[n]=x ; \\
& i=0 ; \\
& \text { while(s[i]<x) } \\
& i=i+1 ; \\
& i f(s[i]==x) \text { return } i ; \\
& \text { else return }-1 ;
\end{aligned}
$$

We can stop when s[i] is greater than x

Much intuitive condition!

Data structure 2

Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Look!
When x is not in $s[]$,

- Q: A it returns n
ential algorithm?

$$
s[n]=x \Rightarrow s[n]=x+1
$$

$s[n]=x ;$
i $=0$;
while(s[i]<x)
We can stop when s[i] is greater than x
i = i+1;
if(s[i]==x) return i;
It may stop even if i<n
else
return -1;
$i<n \Rightarrow s[i]==x$

Data structure 2

Data in the array in increasing order

- $s[]=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x+1$ | | | | | | | | |

When x is not in

- Q: A

$$
\begin{aligned}
& s[] \text {, it returns } n \\
& s[n]=x \rightarrow s[n]=x+1
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{array}{ll}
s[n]=x+1 ; & \\
i=0 ; & \text { We can stop when } s[i] \text { is } \\
\text { while }(s[i]<x) & \text { greater than } x \\
i=i+1 ; & x!=s[i] \Rightarrow x>s[i]
\end{array} \\
\begin{array}{ll}
i f(s[i]==x) \text { return } i ; & \text { It may stop even } \\
\text { else } \quad \text { return }-1 ; & \text { if } i<n \\
& i<n \rightarrow s[i]==x
\end{array}
\end{array}
$$

Data structure 2

Data in the array in increasing order

- S[]$=$| 3 | 9 | 12 | 25 | 29 | 33 | 37 | 65 | 87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x+1$ | | | | | | | | |
- Exit from loop when: $\mathrm{s}[\mathrm{i}] \geqq x$
- Check after loop: $s[i]==x$
- Sentinel: greater than x, e.g., $x+1$
$\mathrm{s}[\mathrm{n}]=\mathrm{x}+1$;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;
Q. Improve of comparison?

Average is better.
But the same in the worst case

Q: When the average is better? ${ }_{18}$

Example: Real code of seq. search in increasing order

```
public class i111_03_p18{
    public static void Main(){
        int[] data = new int[]{3,9,12,25,29,33,37,65,87,-1};
        int len = data.Length-1;
    int target = 17;
    int result = find(target,len,data);
    if (result == -1) {
        System.Console.WriteLine(target+" not found");
    } else {
        System.Console.WriteLine(target+" is at index "+result);
    }
}
    static int find(int x, int n, int[] s) {
    s[n] = x+1;
    int i=0;
        while (s[i]<x) {
        System.Console.Write(i+" ");
        i++;
    }
    if (x==s[i]) return i;
    return -1;
}

\section*{Minor improvements of number of comparisons in sequential search}

\section*{(Tips 1)}

In the array, the minimum data is the first, and the maximum data is the last. Thus, depending on \(x\) and them, we can change the direction of search.
\(\rightarrow\) We still need \(\mathrm{n}-1\) comparisons in the worst case

\section*{(Tips 2)}

First, compare x with the medium data \(\mathrm{s}[\mathrm{n} / 2\) ]. If x is larger, search the right half, and search the left half otherwise.
\(\rightarrow\) At most \(\mathrm{n} / 2\) comparisons. Much smaller.
\(\rightarrow\) It is still \(O(n)\), but,,,
Drastic improvement from \(O(n)\) !!

\section*{Drastic Improvement from O(n)}

\section*{Algorithm 2: m-block method}

\section*{Idea off m-block method}
(0) Divide the array into \(m\) blocks \(B_{0}, B_{1}, \ldots, B_{m-1}\)
(1) Check the biggest item in each block, and find the block \(B_{j}\) that can contain \(x\)
(2) Perform sequential search in \(B_{j}\)

\section*{Algorithm 2: m-block method}

\section*{Idea of m-block method}
(0) Divide the array into \(m\) blocks \(B_{0}, B_{1}, \ldots, B_{m-1}\)
(1) Check the biggest item in each block, and find the block \(B_{j}\) that can contain \(x\)
(2) Perform sequential search in \(B_{i}\)

Simple implementation:
divide into the blocks of same size except the last one.

- Each block has length k , where \(\mathrm{k}=\left\ulcorner\mathrm{n} / \mathrm{m}^{\top}\right.\)
- Block \(B_{j}\) has items from \(s[j k]\) to \(s[(j+1) k-1]\) : \(B_{j}=[j k,(j+1) k-1]\)

\section*{Algorithm 2: m-block method}

\section*{Idea ofi m-block method \\ (0) Divide the array into \(m\) blocks \(B_{0}, B_{1}, \ldots, B_{m-1}\) \\ (1) Check the biggest item in each block, and find the block \(B_{j}\) that can contain \(x\) (2) Perform sequential search in \(B_{i}\)}
\[
\begin{aligned}
& j=0 ; \quad \quad j=0, \ldots, m-2, \quad m-1 \text { is "leftover" } \\
& \text { while }(j<=m-2) \\
& \quad \text { if } x>=s[(j+1) * k-1] \text { then exit from loop } \\
& \quad \text { else } j=j+1 ; \quad \text { The maximum index of } B_{j}
\end{aligned}
\]

If the program exits from the loop, the variable jindicates the index of the block, and j indicates the last one otherwise.

\section*{Algorithm 2: m-block method}

\section*{Idea of m-block method}
(0) Divide the array into \(m\) blocks \(B_{0}, B_{1}, \ldots, B_{m-1}\)
(1) Check the biggest item in each block, and find the block \(B_{j}\) that can contain \(x\)
(2) Perform sequential search in \(B_{j}\)
\(i=j * k ; \quad t=\min \{(j+1) * k-1, \quad n-1\} ;\) Note that we cannot use while( \(\mathrm{i}<\mathrm{t}\) ) extra space between block
if \(x \geqq s[i]\) then exit from the loop;
else i=i+1; //next item in the block if \(x==s[i]\) then return \(i\) and halt; else return -1 and halt.

\section*{Example and time complexity}

- \# of comparisons \(\leqq\) \# of blocks + length of block \(=m+n / m\)
- What the value of \(m\) that minimize \(m+n / m\) ?
- Let \(f(m)=m+n / m\), and take the differential for \(m\)
- \(\mathrm{f}^{\prime}(\mathrm{m})=1-\mathrm{n} / \mathrm{m}^{2}=0 \rightarrow \mathrm{~m}=\mathrm{Vn}\)
- When \(m=\vee n\), \# of comparisons \(\leqq V n+n / V n=2 \mathrm{Vn}\)
- Time complexity: O(Vn)

\section*{5 min. ex.}

Assume \(\mathrm{n}=100\).
Find "average" and "worst" cases for \(m=10, m=2\), and \(m=50\)

For example, when \(\mathrm{n}=1000000\),
Linear search takes \(n / 2=500000\) comparisons, but Block search takes \(\mathrm{V} 1000000=1000\) comparisons!!

Example: Real code of \(m\) block method
```

public class i111_03_p27{
public static void Main(){
int[] data = new int[]{3,9,12,25,29,33,37,65,87};
... the same as p7 ... }

```
    static int find(int \(x\), int \(n\), int[] s) \{
        int \(\mathrm{m}=3\);
        int \(k=(n-1) / m+1\);
        int \(j=0\);
        while (j<=m-2) \{
            System.Console.Write( ((j+1)*k-1)+" ");
            if (x<=s[(j+1)*k-1]) break;
            j++;
        \}
        int \(i=j * k ;\)
        int \(\mathrm{t}=\) System.Math.Min((j+1)*k-1, \(\mathrm{n}-1)\);
        while(i<t) \{
        System.Console.Write(i+" ");
        if (x<=s[i]) break;
        i++;
    \}
    if ( \(\mathrm{X}==\mathrm{s}[\mathrm{i}]\) ) return i ;
    return -1;
    \}

\section*{Discussion of \(m\) block method}
- Lengths of blocks should be the same?
(Observation)
\# of comparisons = \# of searched blocks + \# of comparisons in the block

When you find former block, you can use more time in the block \(\rightarrow\) It is better to decrease the length of blocks
- For example, we set \(\left|B_{i+1}\right|=\left|B_{i}\right|-1\)
- Make "index"+"length of a block" constant

\section*{Can we do better than \(\mathrm{O}(\mathrm{Vn})\) ?}

\section*{Algorithm 3: Double m-block method} In the m-block method, we use sequential search in each block.
\(\Rightarrow\) We can use m-block method again in the block!!


Idea of double m-block method
For example, if the number of data is 27,
- Linear search requires 27 in the worst case
- 3 -block method requires at most \(3+9\)
- Double 3-block method needs at most \(3+3+3\)

\section*{Algorithm 3: Double m-block method} In the m-block method, we use sequential search in each block.
\(\longmapsto\) We can use m-block method again in the block!!
Recursive call: basic and strong idea


Idea of double m-block method
Why we stop only twice? We can more!!
Divide search area into \(m\) blocks, and repeat the same process for the block that contains \(x\), and repeat again and again up to the block has length at most some constant N

\section*{Example:}

\section*{find 20 ( \(x=20\) ) for block size 3}


\begin{tabular}{ccccccccccccc|cccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
s & 4 & 6 & 7 & 9 & 11 & 14 & 15 & 17 & 18 & 20 & 23 & 24 & 26 & 27 & 29 & 30 & 32 \\
\hline
\end{tabular}

【I don't ask you to compute it by yourself...】

\section*{Analysis of time complexity}
- Length of search space
\[
n \rightarrow\left\lceil\frac{n}{m}\right\rceil \rightarrow\left\lceil\frac{\left[\frac{n}{m}\right]}{m}\right\rceil \rightarrow\left\lceil\frac{\left\lceil\frac{\left\lceil\frac{m}{m}\right]}{m}\right\rceil}{m}\right\rceil \rightarrow \cdots
\]
- Let \(n_{i}\) be the length after the \(i\)-th call
\[
\begin{aligned}
n_{1} & =\left\lceil\frac{n}{m}\right\rceil \leq \frac{n}{m}+1 \\
n_{2} & =\left\lceil\frac{n_{1}}{m}\right\rceil \leq \frac{n}{m^{2}}+\frac{1}{m}+1 \\
& \ldots \\
n_{i} & \leq \frac{n}{m^{i}}+\sum_{j=0}^{i-1} \frac{1}{m^{j}} \leq \frac{n}{m^{i}}+2
\end{aligned}
\]

【I don't ask you to compute it by yourself...】

\section*{Analysis of time complexity}
- The length \(n_{i}\) after the \(i\)-th recursive call:
\[
n_{i} \leqq n / m^{i}+2
\]
- How many recursive calls made? \(n_{i} \leq \operatorname{Lmin} \Longleftarrow \operatorname{Lmin} \geq \frac{n}{m^{i}}+2 \Longleftrightarrow \mathfrak{i} \geq \log _{m} \frac{n}{\operatorname{Lmin}-2}\)
- Each recursive call make at most m-1 comparisons, so the total number of comparisons is \(\leq(m-1) \log _{m} \frac{n}{\operatorname{Lmin}-2}+\operatorname{Lmin}\)
- The time complexity is \(\mathrm{O}(\log n)\)

【I don't ask you to compute it by yourself...】

\section*{Analysis of time complexity: The best value of \(m\)}
- \(T(n, m)=(m-1) \log _{m} \frac{n}{\operatorname{Lmin}-2}+\operatorname{Lmin}\)
\[
=\frac{m-1}{\log _{2} m} \log _{2} \frac{n}{\operatorname{Lmin}-2}+\operatorname{Lmin}
\]
- To make \(T(n, m)\) the minimum, smaller \(m\) is better because \(m-1\) grows faster than \(\log _{2} m\) (which will be checked in the big-O notation).
- Therefore, \(\mathrm{m}=2\) is the optimal

\section*{[Summary]}
- For unorganized data, we have to use \(O(n)\) time.
- If data are sorted in increasing order,
- We can exit from the loop when we find the position of \(x\)
- Improved to \(\mathrm{O}(\mathrm{Vn})\) with m -block method with \(\mathrm{m}=\mathrm{Vn}\)
- Improved to \(\mathrm{O}(\log n)\) with doubly m-block method with \(m=2\)
- Honestly, in recent programming environment, you do not need to make such a search by yourself.
- Usually, we use a function indexOf(). However, it is very important that you should know that
- "indexOf is heavy" for unorganized data
- "indexOf is light" for SortedList```

