
I111E Algorithms & Data Structures
3. Basic Programming

1

School of Information Science
Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp

2019-10-23

All materials are available at
http://www.jaist.ac.jp/~uehara/couse/2019/i111e

C Version

mailto:uehara@jaist.ac.jp
mailto:uehara@jaist.ac.jp

SEARCH PROBLEM
Main topic:

2

Search Problem
• Problem: S is a given set of data. For any given

data x, determine efficiently if S contains x or
not.

• Efficiency: Estimate the time complexity by n =
|S|, the size of the set S
– In this problem, “checking every data in S” is

enough, and this gives us an upper bound O(n) in
the worst case.

– Can we do better?
– How about dictionary?

3

Roughly, “the running time is
proportional to n.”

How to tackle the problem

• Consider data structure and how to store data
– Data are in an array in any ordering
– Data are in an array in increasing order

• Search algorithm: The way of searching
– Sequential search
– m-block method
– Double m-block method
– Binary search

• Analysis of efficiency
– (Big-O notation)

4

We introduce these methods
to explain our naïve idea.

Data structure 1
Data are stored in arbitrary ordering

• Each element in the set S is stored in an array
s from s[0] to s[n-1] in any arbitrary ordering.

5

37 12 25 9 87 33 65 3 29s[]=

Sequential search

• Input: any natural number x
• Output:

– If there is i such that s[i] == x, output i
– Otherwise, output -1 (for simplicity)

6

In the worst case, we need n comparisons.
Thus, the running time is proportional to n.
→ O(n) time algorithm

for (i=0; i<n; ++i)
if(x==s[i]) return i;

return -1;

Example: Real code of seq. search

7

public class i111_03_p7{
public static void Main(){

int[] data = new int[]{37,12,25,9,87,33,65,3,29};
int len = data.Length;

int target = 87;
int result = find(target,len,data);
if (result == -1) {

System.Console.WriteLine(target+" not found");
} else {

System.Console.WriteLine(target+" is at index "+result);
}

}

static int find(int x, int n, int[] s) {
for (int i=0; i<n; i++) {

System.Console.Write(i+" ");
if (x==s[i]) return i;

}
return -1;

}
}

Precise time complexity of
sequential search

• At most 3n + 2 steps

8

for (i=0; i<n; ++i)
if(x==s[i]) return i;

return -1;

Initialization of i takes 1 operation

For the number of loops ≦ n,
comparison ×2 (==, <)
increment ×1 （++）

Return takes 1 operation

Before searching, push x itself at the end of the array;
Then you definitely have x==s[i] for some 0<=i<=n
So you do not need the check i<n any more.

array s[] =

0 1 2 n-1 n x
“Sentinel”

searching

Programming tips 1:
simplify by using “sentinel”

s[n] = x;
i = 0;
while(x != s[i])
i = i+1;
if(i < n) return i;
else return -1;

Put the sentinel

Simple loop!
 2 operations

At most 2n+4 (<3n+2) operations
=𝑂𝑂 𝑛𝑛 9

【bit maniac】

Note that we need
an array of size n+1

Analysis of the number of comparisons

Consider best/worst/average cases
• The best case: 1

– when s[0] == x

• The worst case: n
– when x is not in s[0]…s[n-1]

• The average case :
– The expected value of # of comparisons
– The i-th element is compared with probability 1/n
– The number of comparisons when x is equal to

the i-th element is i.

10

s[n] = x;
i = 0;
while(x!=s[i])
i = i+1;

if(i < n)
return i;

else
return -1;

※average is close to n when we often have the case that x is not in data
※It depends on the situation that which case is important

What happens
if we use

“nice” data structure?

11

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(x!=s[i])
i = i+1;
if(i < n) return i;
else return -1;

12

We can stop when s[i] is
greater than x
x!=s[i] x>s[i]

We don’t consider how can we do now

x

Idea

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(i < n) return i;
else return -1;

13

We can stop when s[i] is
greater than x
x!=s[i] x>s[i]

We don’t consider how can we do now

x

Idea

It does not happen over x!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(i < n) return i;
else return -1;

14

We can stop when s[i] is
greater than x
x!=s[i] x>s[i]

x

We can stop when s[i] is
greater than x
x!=s[i] x>s[i]
It may stop even if i<n
i<n s[i]==x
E.g, if x=30, we have i<n (5<9)
but it should return (-1)Look!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

15

We can stop when s[i] is
greater than x
x!=s[i] x>s[i]

x

We can stop when s[i] is
greater than x
x!=s[i] x>s[i]

It may stop even if i<n
i<n s[i]==x

Much intuitive condition!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

16

We can stop when s[i] is
greater than x
x!=s[i] x>s[i]

x

We can stop when s[i] is
greater than x
x!=s[i] x>s[i]

It may stop even if i<n
i<n s[i]==x

When x is not in s[],
it returns n
s[n]=x s[n]=x+1

Look!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x+1;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

17

We can stop when s[i] is
greater than x
x!=s[i] x>s[i]

It may stop even
if i<n
i<n s[i]==x

When x is not in
s[], it returns n
s[n]=x s[n]=x+1

x+1

Data structure 2
Data in the array in increasing order

• s[]=
– Exit from loop when: s[i]≧x
– Check after loop: s[i]==x
– Sentinel: greater than x, e.g., x+1

3 9 12 25 29 33 37 65 87

s[n]=x+1;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

18

Q. Improve of comparison?

A. Average is better.
But the same in

the worst case

x+1

Q：When the average is better?

Example: Real code of seq. search in increasing order

19

public class i111_03_p18{
public static void Main(){

int[] data = new int[]{3,9,12,25,29,33,37,65,87,-1};
int len = data.Length-1;

int target = 17;
int result = find(target,len,data);
if (result == -1) {

System.Console.WriteLine(target+" not found");
} else {

System.Console.WriteLine(target+" is at index "+result);
}

}

static int find(int x, int n, int[] s) {
s[n] = x+1;
int i=0;
while (s[i]<x) {

System.Console.Write(i+" ");
i++;

}
if (x==s[i]) return i;
return -1;

}
}

(Tips 1)
In the array, the minimum data is the first, and the maximum
data is the last. Thus, depending on x and them,
we can change the direction of search.
We still need n-1 comparisons in the worst case

(Tips 2)
First, compare x with the medium data s[n/2]. If x is larger,
search the right half, and search the left half otherwise.
At most n/2 comparisons. Much smaller.
It is still 𝑂𝑂(𝑛𝑛), but,,,

Minor improvements of number of
comparisons in sequential search

20

【bit maniac】

Drastic improvement from O(n)!!

Drastic Improvement from O(n)

21

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

Algorithm 2: m-block method

22

Simple implementation:
divide into the blocks of same size except the last one.

0 n/m 2n/m n-1

Block 0 Block 1 Block 2 Block m-1

Algorithm 2: m-block method

23

・ Each block has length k, where k = n/m
・ Block Bj has items from s[jk] to s[(j+1)k-1]: Bj = [jk, (j+1)k-1]

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

Algorithm 2: m-block method

j=0;
while(j<=m-2)

if x>=s[(j+1)*k-1] then exit from loop
else j=j+1;

If the program exits from the loop, the variable j indicates
the index of the block, and j indicates the last one otherwise.

24

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

j=0,…,m-2, m-1 is “leftover”

The maximum index of Bj

Algorithm 2: m-block method

i=j*k; t = min{ (j+1)*k-1, n-1 };
while(i < t)

if x≧s[i] then exit from the loop；
else i=i+1; //next item in the block

if x == s[i] then return i and halt；
else return -1 and halt.

25

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

Note that we cannot use
sentinel since we have no
extra space between block

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

x=20

Example and time complexity

• # of comparisons ≦ # of blocks ＋ length of block = m + n/m
• What the value of m that minimize m + n/m ?

– Let f(m) = m + n/m, and take the differential for m
– f’(m) = 1 – n/m2 = 0 → m = √n
– When m = √n, # of comparisons≦ √n + n/√n = 2 √n

• Time complexity: O(√n)

26

For example, when n=1000000,
Linear search takes n/2=500000 comparisons, but
Block search takes √1000000=1000 comparisons!!

5 min. ex.
Assume n=100.

Find “average” and
“worst” cases for
m=10, m=2, and

m=50

public class i111_03_p27{
public static void Main(){

int[] data = new int[]{3,9,12,25,29,33,37,65,87};
… the same as p7 … }

static int find(int x, int n, int[] s) {
int m=3;
int k=(n-1)/m +1;

int j=0;
while (j<=m-2) {

System.Console.Write(((j+1)*k-1)+" ");
if (x<=s[(j+1)*k-1]) break;
j++;

}

int i=j*k;
int t=System.Math.Min((j+1)*k-1, n-1);
while(i<t) {

System.Console.Write(i+" ");
if (x<=s[i]) break;
i++;

}
if (x==s[i]) return i;
return -1;

}
}

Example:
Real code of m
block method

27

(Observation)
of comparisons ＝ # of searched blocks

＋ # of comparisons in the block

When you find former block, you can use more time in the block
It is better to decrease the length of blocks

・For example, we set |Bi+1|=|Bi|-1
・Make “index”+”length of a block” constant

Discussion of m block method

• Lengths of blocks should be the same?

28

【Pretty maniac】

In reality, this kind of method of decreasing “unevenness” is preferred.

Can we do better than O(√n)?

29

In the m-block method, we use sequential search in each block.
We can use m-block method again in the block!!

For example, if the number of data is 27,
• Linear search requires 27 in the worst case
• 3-block method requires at most 3+9
• Double 3-block method needs at most 3+3+3

Idea of double m-block method

Algorithm 3: Double m-block method

30

In the m-block method, we use sequential search in each block.
We can use m-block method again in the block!!

Divide search area into ｍ blocks, and repeat the same
process for the block that contains ｘ, and repeat again and
again up to the block has length at most some constant N

Idea of double m-block method

Algorithm 3: Double m-block method

31

Recursive call: basic and strong idea

Why we stop only twice? We can more!!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

Example:
find 20 (x=20) for block size 3

32

Analysis of time complexity

• Length of search space

• Let ni be the length after the i-th call

33

【I don’t ask you to compute it by yourself…】

Analysis of time complexity
• The length ni after the i-th recursive call:

ni≦ n/mi + 2
• How many recursive calls made?

• Each recursive call make at most m-1
comparisons, so the total number of
comparisons is

• The time complexity is O(log n)
34

【I don’t ask you to compute it by yourself…】

Analysis of time complexity:
The best value of m

35

•

• To make T(n,m) the minimum, smaller m is
better because m-1 grows faster than log2 m
(which will be checked in the big-O notation).

• Therefore, m=2 is the optimal

We will have “binary search”

【I don’t ask you to compute it by yourself…】

[Summary]
• For unorganized data, we have to use O(n) time.
• If data are sorted in increasing order,

– We can exit from the loop when we find the position of x
– Improved to O(√n) with m-block method with m=√n
– Improved to O(log n) with doubly m-block method with m=2

• Honestly, in recent programming environment, you do
not need to make such a search by yourself.

• Usually, we use a function indexOf(). However, it is very
important that you should know that
– “indexOf is heavy” for unorganized data
– “indexOf is light” for SortedList

36

	I111E Algorithms & Data Structures�3. Basic Programming
	Search Problem
	Search Problem
	How to tackle the problem
	Data structure 1�Data are stored in arbitrary ordering
	Sequential search
	Example: Real code of seq. search
	Precise time complexity of sequential search
	Programming tips 1: �simplify by using “sentinel”
	Analysis of the number of comparisons
	What happens�if we use �“nice” data structure?�
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Example: Real code of seq. search in increasing order
	Minor improvements of number of comparisons in sequential search
	Drastic Improvement from O(n)
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Example and time complexity
	Example: �Real code of m block method
	Discussion of m block method
	Can we do better than O(√n)?
	Algorithm 3: Double m-block method
	Algorithm 3: Double m-block method
	Example: �find 20 (x=20) for block size 3
	Analysis of time complexity
	Analysis of time complexity
	Analysis of time complexity: �The best value of m
	[Summary]

