C Version

1111E Algorithms & Data Structures
3. Basic Programming

School of Information Science

Ryuhei Uehara & Giovanni Viglietta

uehara@jaist.ac.jp & johnny@jaist.ac.jp
2019-10-23

All materials are available at
http://www.jaist.ac.jp/~uehara/couse/2019/i1l1le

mailto:uehara@jaist.ac.jp
mailto:uehara@jaist.ac.jp

SEARCH PROBLEM

Search Problem

* Problem: Sis a given set of data. For any given
data x, determine efficiently if S contains x or
not.

* Efficiency: Estimate the time complexity by n =
|S|, the size of the set S

— In this problem, “checking every data in §” is
enough, and this gives us an upper bound O(n) in

the worst case.
o
o proportional to n.
— How about dictionary?

How to tackle the problem

* Consider data structure and how to store data
— Data are in an array in any ordering
— Data are in an array in increasing order

e Search algorithm: The way of searching
— Sequential search

— m-block method } We introduce these methods
— Double m-block method to explain our naive 1dea.

— Binary search
* Analysis of efficiency
— (Big-O notation)

Data structure 1
Data are stored in arbitrary ordering

 Each element in the set S is stored in an array
s from s[0] to s[n-1] in any arbitrary ordering.

s[]=|37|12|25| 9 | 87|33 |65 3 |29

Sequential search

* |nput: any natural number x

* Qutput:
— If there is i such that s[i] == x, output i
— Otherwise, output -1 (for simplicity)
for (i=0; i<n; ++1)

if(x==s[i]) return i;
return -1;
In the worst case, we need n comparisons.

Thus, the running time 1s proportional to 7.
— O(n) time algorithm

Example: Real code of seq. search

public class 1111 03 p7{
public static void Main(){

int[] data
int len =

int target
int result
if (result

System.

1} else {

System.

}
}

= new int[]{37,12,25,9,87,33,65,3,29};

data.Length;

= 87;
= find(target,len,data);
== -1) {

Console.WriteLine(target+" not found");

Console.WriteLine(target+" is at index "+result);

static int find(int x, int n, int[] s) {
for (int i=0; i<n; i++) {
System.Console.Write(i+" ");

if (x==

}

return -1;

s[i]) return i;

Precise time complexity of
sequential search

* At most 3n + 2 steps

l Initialization of i takes 1 operation

For the number of loops = n,
comparison X2 (==, <)
increment X1 (++)

for (i=0; i<n; ++1i)
if(x==s[1i]) return 1i;
return -1;

T Return takes 1 operation

[bit maniac]

Programming tips 1:
simplify by using “sentine

Before searching, push x itself at the end of the array;
Then you definitely have x==s[i] for some 0<=i<=n
So you do not need the check i<n any more.

O 1 2 n_1 “« X . ”
Sentinel
array s[] Note that we need

- an array of size n+1

searching .
s[n] = x;
i= 0; Simple loop!
while(x != s[i]) } =>» 2 operations

i = i+1;

if(i < n) return ij; At most 2n+4 (<3n+2) operations
else return -1; =0(n) ;

III

Analysis of the number of comparisons

Consider best/worst/average cases §[n]@= %
i= 0;

* The best case: 1 while(x!=s[i])

— when s[0] == x 1 = 1+1;
 The worst case: n (1 < n).

return 1;
— when x is not in s[0]...s[n-1] alse
=i n+2 return -1;

1
e The averagecase: 2_ - =5
i=1

— The expected value of # of comparisons

— The i-th element is compared with probability 1/n

— The number of comparisons when x is equal to
the i-th element s i.

»:average is close to n when we often have the case that x 1s not in data
% It depends on the situation that which case is important

What happens
if we use
“nice” data structure?

Data structure 2
Data in the array in increasing order

We don’t consider how can we do now

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

* Q: Any improvement in sequential algorithm?

Idea
s[n]=x; We can stop when s[i] is
1= 0; greater than x
while(x!=s[i]) x!=s[i] = x>s[i]
1 = 1+1;

if(i < n) return i;
else return -1;

Data structure 2
Data in the array in increasing order

We don’t consider how can we do now

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

* Q: Any improvement in sequential algorithm?

Idea

s[n]=x; We can stop when s[i] is
1 = ©; itdoesnothappen overx! greater than x

wh11e(s[1]<x) x!=s[i] = x>s[i]
1 = 1+1;

if(i < n) return i;

else return -1;

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

* Q: Any improvement in sequential algorithm?

s[n]=x;

i = 0;

while(s[i]<x) ~====g

,1 K 2iodhs , It may stop even if i<n
if(i < n) return i; i<n > s[i]==x

else ISLLIRURREI o if x=30, we have i<n (5<9)

BGOSR |t it should return (—1)

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

* Q: Any improvement in sequential algorithm?

s[n]=x;

1= 0;

while(s[i]<x) —

i = 1+41; |
if(s[i]==x) return i; AN if i<n
else return -1; i<n D s[i]==x

Much intuitive condition! .

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |fx

Look!

When x is not in s[],
MOV i ctyurns n
s[n]=x =» s[n]=x+1

ential algorithm?

s[n]=x; [

i = 0; N

while(s[i]<x) ==l
i = 1+1;

if(s[1]==x) return 1i;
else return -1;

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |[xeal

When x is not in
OWVS\ 11 it returns n
s[n]=x = s[n]=x+1

pquential algorithm?

s[n]=x+1; We can stop when s[i] is
1= 0; greater than x
while(s[i]<x) x!=s[i] = x>s[i]

1 = 1+1;

if(s[i]==x) return ij; It may stop even
else return -1; if i<n

i<n =» s[i]==x

Data structure 2
Data in the array in increasing order

*s[l=) 3 | 9 [12]25]29]33]37]65]87 |jsdl
— Exit from loop when: s[i]=x

— Check after loop: s[i]==
— Sentinel: greater than x, e.g., x+1

s[n]=x+1;
i = 0;
while(s[1i]<x)
1 = 1+1;
if(s[i]==x) return i;
the worst case
else return -1;

Q: When the average 1s better? i«

Example: Real code of seq. search in increasing order

public class 1111 03 p18{
public static void Main(){
int[] data = new int[]{3,9,12,25,29,33,37,65,87,-1};
int len = data.Length-1;

int target = 17;
int result = find(target,len,data);

if (result == -1) {
System.Console.WritelLine(target+" not found");
} else {

System.Console.WritelLine(target+" is at index "+result);

}
}

static int find(int x, int n, int[] s) {

s[n] = x+1;

int i=0;

while (s[i]<x) {
System.Console.Write(i+" ");
i++;

}

if (x==s[i]) return i;

return -1;

[bit maniac)

Minor improvements of number of
comparisons in sequential search

(Tips 1)

In the array, the minimum data is the first, and the maximum
data is the last. Thus, depending on x and them,

we can change the direction of search.

=>» We still need n-1 comparisons in the worst case

(Tips 2)
First, compare x with the medium data s[n/2]. If x is larger,
search the right half, and search the left half otherwise.

=>» At most n/2 comparisons. Much smaller.
=> It is still O(n), but,,,

Drastic improvement from O(n)!!

Drastic Improvement from O(n)

Algorithm 2: m-block method

“lidiea ofim=block method

(1) Check the biggest item in each block,
and find the block B, that can contain x

(2) Perform sequential search in B,

22

Algorithm 2: m-block method

“ldea ot m=bhloclk method

Simple implementation:
divide into the blocks of same size except the last one.

0 n/m 2n/m n-1

Block 0 Block1 Block?2 Block m-1

» Each block has length k, where k = 'n/m
* Block B; has items from s[jk] to s[(j+D)k-1]: B, = [jk, j+1)k-1] .

Algorithm 2: m-block method

“ldea ot m=block method

(0) Divide the array into m blocks B, B, ..., B
niggest item in eac
and find the block B; that can contain x

m-1

J=0; i=0,...,m-2, m-1 is “lefiover”
while(j<=m-2)
if x>=s[Kg+1)*k—1] then exit from loop

else j=j+1; The maximum index of B,

If the program exits from the loop, the variable j indicates

the index of the block, and j indicates the last one otherwise.
24

Algorithm 2: m-block method

“ldeatoffm=block method
(0) Divide the array into m blocks B, By, ..., B, ;

(2) Perform sequential search in B,

P=3%k; t = min{ (F+1)*K-1, N-1 }; suntinel st e hove no
while(1 < t) extra space between block
if x=s[i] then exit from the loop;
else i=i+1; //next item in the block
if x == s[i] then return 1 and halt;

else return -1 and halt.

25

Example and time complexity

012345 6 7 8 91011121314151617
sl 34 6 7 91114 15pwmeplolwel’?4 26 27 29 |30 32

x=20

« # of comparisons = # of blocks + length of block = m + n/m

 What the value of m that minimize m + n/m ?
— Let f(m) = m + n/m, and take the differential for m
— f'lm)=1-n/m?=0 > m=vVn
— When m = Vn, # of comparisons= vn + n/Vn =2 vn

Find “average” and
“worst” cases for
m=10, m=2, and

 Time complexity: O(Vn) m=50

Linear search takes n/2=500000 comparisons, but

Block search takes v1000000=1000 comparisons!!

public class 1111 03 p27{
public static void Main(){

Example: int[] data = new int[]{3,9,12,25,29,33,37,65,87};
Real code of m }
block method static int find(int x, int n, int[] s) {
int m=3;

int k=(n-1)/m +1;

int j=0;

while (j<=m-2) {
System.Console.Write(((j+1)*k-1)+" ");
if (x<=s[(j+1)*k-1]) break;
J++;

¥

int i=j*k;
int t=System.Math.Min((j+1)*k-1, n-1);
while(i<t) {
System.Console.Write(i+" ");
if (x<=s[i]) break;
i++;
}
if (x==s[i]) return i;
return -1;

[Pretty maniac]

Discussion of m block method

* Lengths of blocks should be the same?

(Observation)
of comparisons = # of searched blocks
+ # of comparisons in the block

When you find former block, you can use more time in the block
=> It is better to decrease the length of blocks

“For example, we set |B,,,|=|B;|-1

*Make “index”+”length of a block” constant

In reality, this kind of method of decreasing “unevenness” is preferred.

Can we do better than O(Vn)?

Algorithm 3: Double m-block method

In the m-block method, we use sequential search in each block.
== \We can use m-block method again in the block!!

;) / \ /

Idea of double m-block method

For example, 1f the number of data is 27,

* Linear search requires 27 in the worst case

* 3-block method requires at most 3+9

* Double 3-block method needs at most 3+3+3 30

Algorithm 3: Double m-block method

In the m-block method, we use sequential search in each block.
== \We can use m-block method again in the block!!

Recursive call: basic and strong idea

;) / \ /

Idea of double m-block method
Why we stop only twice? We can more!!
Divide search area into m blocks, and repeat the same
process for the block that contains x, and repeat again and
again up to the block has length at most some constant N

Example:
find 20 (x=20) for block size 3

012345 6 7 &8 9 1011121314151617
3467911141517 182023242627 29 30 32
012345 6 7 8 9 1011121314151617
3467 911141517 18|20 23(24 26 27 29 30 32
012345 6 7 8 91011121314151617
3467911141517 18|2023(24 2627 29 30 32

—p

[I don’t ask you to compute it by yourself...]

Analysis of time complexity

* Length of search space

SR

* Let n, be the length after the i-th call

—
3
—
_
]

3| 3

n n
ny = ——‘ < — +1
m m
"M n
N .1\ P
m m m
1—1
n 1 n

[I don’t ask you to compute it by yourself...]

Analysis of time complexity

* The length n, after the i-th recursive call:
n, = n/m+?2
* How many recursive calls made?

ningin<:Lmin2L—|—2<:>iZIOgm ,
mt Lmin — 2

* Each recursive call make at most m-1
comparisons, so the total number of

comparisonsis < (m—1)

n

+ Lmin

1
O6m Lmin — 2

* The time complexity is O(log n)

[I don’t ask you to compute it by yourself...]

Analysis of time complexity:
The best value of m

e T(n,m) = (m—1)log,, ——— + Lmin
Lmin — 2
— 1
m n L Lmin

— 1
log, m %2 Tomin — 2

 To make T(n,m) the minimum, smaller mis
better because m-1 grows faster than log, m
(which will be checked in the big-O notation).

* Therefore, m=2 is the optimal

OOO
We will have “binary search” A
35

[Summary]

For unorganized data, we have to use O(n) time.

If data are sorted in increasing order,

— We can exit from the loop when we find the position of x

— Improved to O(Vn) with m-block method with m=vn

— Improved to O(log n) with doubly m-block method with m=2

Honestly, in recent programming environment, you do
not need to make such a search by yourself.

Usually, we use a function indexOf(). However, it is very
important that you should know that

— “indexOf is heavy” for unorganized data
— “indexOf is light” for SortedList

	I111E Algorithms & Data Structures�3. Basic Programming
	Search Problem
	Search Problem
	How to tackle the problem
	Data structure 1�Data are stored in arbitrary ordering
	Sequential search
	Example: Real code of seq. search
	Precise time complexity of sequential search
	Programming tips 1: �simplify by using “sentinel”
	Analysis of the number of comparisons
	What happens�if we use �“nice” data structure?�
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Example: Real code of seq. search in increasing order
	Minor improvements of number of comparisons in sequential search
	Drastic Improvement from O(n)
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Example and time complexity
	Example: �Real code of m block method
	Discussion of m block method
	Can we do better than O(√n)?
	Algorithm 3: Double m-block method
	Algorithm 3: Double m-block method
	Example: �find 20 (x=20) for block size 3
	Analysis of time complexity
	Analysis of time complexity
	Analysis of time complexity: �The best value of m
	[Summary]

