
I111E Algorithms & Data Structures
3. Basic Programming

1

School of Information Science
Ryuhei Uehara & Giovanni Viglietta
uehara@jaist.ac.jp & johnny@jaist.ac.jp

2019-10-23

All materials are available at
http://www.jaist.ac.jp/~uehara/couse/2019/i111e

C Version

mailto:uehara@jaist.ac.jp
mailto:uehara@jaist.ac.jp

SEARCH PROBLEM
Main topic:

2

Search Problem
• Problem: S is a given set of data. For any given

data x, determine efficiently if S contains x or
not.

• Efficiency: Estimate the time complexity by n =
|S|, the size of the set S
– In this problem, “checking every data in S” is

enough, and this gives us an upper bound O(n) in
the worst case.

– Can we do better?
– How about dictionary?

3

Roughly, “the running time is
proportional to n.”

How to tackle the problem

• Consider data structure and how to store data
– Data are in an array in any ordering
– Data are in an array in increasing order

• Search algorithm: The way of searching
– Sequential search
– m-block method
– Double m-block method
– Binary search

• Analysis of efficiency
– (Big-O notation)

4

We introduce these methods
to explain our naïve idea.

Data structure 1
Data are stored in arbitrary ordering

• Each element in the set S is stored in an array
s from s[0] to s[n-1] in any arbitrary ordering.

5

37 12 25 9 87 33 65 3 29s[]=

Sequential search

• Input: any natural number x
• Output:

– If there is i such that s[i] == x, output i
– Otherwise, output -1 (for simplicity)

6

In the worst case, we need n comparisons.
Thus, the running time is proportional to n.
→ O(n) time algorithm

for (i=0; i<n; ++i)
if(x==s[i]) return i;

return -1;

Example: Real code of seq. search

7

public class i111_03_p7{
public static void Main(){

int[] data = new int[]{37,12,25,9,87,33,65,3,29};
int len = data.Length;

int target = 87;
int result = find(target,len,data);
if (result == -1) {

System.Console.WriteLine(target+" not found");
} else {

System.Console.WriteLine(target+" is at index "+result);
}

}

static int find(int x, int n, int[] s) {
for (int i=0; i<n; i++) {

System.Console.Write(i+" ");
if (x==s[i]) return i;

}
return -1;

}
}

Precise time complexity of
sequential search

• At most 3n + 2 steps

8

for (i=0; i<n; ++i)
if(x==s[i]) return i;

return -1;

Initialization of i takes 1 operation

For the number of loops ≦ n,
comparison ×2 (==, <)
increment ×1 （++）

Return takes 1 operation

Before searching, push x itself at the end of the array;
Then you definitely have x==s[i] for some 0<=i<=n
So you do not need the check i<n any more.

array s[] =

0 1 2 n-1 n x
“Sentinel”

searching

Programming tips 1:
simplify by using “sentinel”

s[n] = x;
i = 0;
while(x != s[i])
i = i+1;
if(i < n) return i;
else return -1;

Put the sentinel

Simple loop!
 2 operations

At most 2n+4 (<3n+2) operations
=𝑂𝑂 𝑛𝑛 9

【bit maniac】

Note that we need
an array of size n+1

Analysis of the number of comparisons

Consider best/worst/average cases
• The best case: 1

– when s[0] == x

• The worst case: n
– when x is not in s[0]…s[n-1]

• The average case :
– The expected value of # of comparisons
– The i-th element is compared with probability 1/n
– The number of comparisons when x is equal to

the i-th element is i.

10

s[n] = x;
i = 0;
while(x!=s[i])
i = i+1;

if(i < n)
return i;

else
return -1;

※average is close to n when we often have the case that x is not in data
※It depends on the situation that which case is important

What happens
if we use

“nice” data structure?

11

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(x!=s[i])
i = i+1;
if(i < n) return i;
else return -1;

12

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

We don’t consider how can we do now

x

Idea

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(i < n) return i;
else return -1;

13

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

We don’t consider how can we do now

x

Idea

It does not happen over x!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(i < n) return i;
else return -1;

14

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

x

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]
It may stop even if i<n
i<n  s[i]==x
E.g, if x=30, we have i<n (5<9)
but it should return (-1)Look!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

15

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

x

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even if i<n
i<n  s[i]==x

Much intuitive condition!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

16

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

x

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even if i<n
i<n  s[i]==x

When x is not in s[],
it returns n
s[n]=x  s[n]=x+1

Look!

Data structure 2
Data in the array in increasing order

• s[]=

• Q: Any improvement in sequential algorithm?

3 9 12 25 29 33 37 65 87

s[n]=x+1;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

17

We can stop when s[i] is
greater than x
x!=s[i]  x>s[i]

It may stop even
if i<n
i<n  s[i]==x

When x is not in
s[], it returns n
s[n]=x  s[n]=x+1

x+1

Data structure 2
Data in the array in increasing order

• s[]=
– Exit from loop when: s[i]≧x
– Check after loop: s[i]==x
– Sentinel: greater than x, e.g., x+1

3 9 12 25 29 33 37 65 87

s[n]=x+1;
i = 0;
while(s[i]<x)
i = i+1;
if(s[i]==x) return i;
else return -1;

18

Q. Improve of comparison?

A. Average is better.
But the same in

the worst case

x+1

Q：When the average is better?

Example: Real code of seq. search in increasing order

19

public class i111_03_p18{
public static void Main(){

int[] data = new int[]{3,9,12,25,29,33,37,65,87,-1};
int len = data.Length-1;

int target = 17;
int result = find(target,len,data);
if (result == -1) {

System.Console.WriteLine(target+" not found");
} else {

System.Console.WriteLine(target+" is at index "+result);
}

}

static int find(int x, int n, int[] s) {
s[n] = x+1;
int i=0;
while (s[i]<x) {

System.Console.Write(i+" ");
i++;

}
if (x==s[i]) return i;
return -1;

}
}

(Tips 1)
In the array, the minimum data is the first, and the maximum
data is the last. Thus, depending on x and them,
we can change the direction of search.
We still need n-1 comparisons in the worst case

(Tips 2)
First, compare x with the medium data s[n/2]. If x is larger,
search the right half, and search the left half otherwise.
At most n/2 comparisons. Much smaller.
It is still 𝑂𝑂(𝑛𝑛), but,,,

Minor improvements of number of
comparisons in sequential search

20

【bit maniac】

Drastic improvement from O(n)!!

Drastic Improvement from O(n)

21

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

Algorithm 2: m-block method

22

Simple implementation:
divide into the blocks of same size except the last one.

0 n/m 2n/m n-1

Block 0 Block 1 Block 2 Block m-1

Algorithm 2: m-block method

23

・ Each block has length k, where k = n/m
・ Block Bj has items from s[jk] to s[(j+1)k-1]: Bj = [jk, (j+1)k-1]

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

Algorithm 2: m-block method

j=0;
while(j<=m-2)

if x>=s[(j+1)*k-1] then exit from loop
else j=j+1;

If the program exits from the loop, the variable j indicates
the index of the block, and j indicates the last one otherwise.

24

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

j=0,…,m-2, m-1 is “leftover”

The maximum index of Bj

Algorithm 2: m-block method

i=j*k; t = min{ (j+1)*k-1, n-1 };
while(i < t)

if x≧s[i] then exit from the loop；
else i=i+1; //next item in the block

if x == s[i] then return i and halt；
else return -1 and halt.

25

(0) Divide the array into m blocks B0, B1, ... , Bm-1
(1) Check the biggest item in each block,

and find the block Bj that can contain x
(2) Perform sequential search in Bj

Note that we cannot use
sentinel since we have no
extra space between block

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

x=20

Example and time complexity

• # of comparisons ≦ # of blocks ＋ length of block = m + n/m
• What the value of m that minimize m + n/m ?

– Let f(m) = m + n/m, and take the differential for m
– f’(m) = 1 – n/m2 = 0 → m = √n
– When m = √n, # of comparisons≦ √n + n/√n = 2 √n

• Time complexity: O(√n)

26

For example, when n=1000000,
Linear search takes n/2=500000 comparisons, but
Block search takes √1000000=1000 comparisons!!

5 min. ex.
Assume n=100.

Find “average” and
“worst” cases for
m=10, m=2, and

m=50

public class i111_03_p27{
public static void Main(){

int[] data = new int[]{3,9,12,25,29,33,37,65,87};
… the same as p7 … }

static int find(int x, int n, int[] s) {
int m=3;
int k=(n-1)/m +1;

int j=0;
while (j<=m-2) {

System.Console.Write(((j+1)*k-1)+" ");
if (x<=s[(j+1)*k-1]) break;
j++;

}

int i=j*k;
int t=System.Math.Min((j+1)*k-1, n-1);
while(i<t) {

System.Console.Write(i+" ");
if (x<=s[i]) break;
i++;

}
if (x==s[i]) return i;
return -1;

}
}

Example:
Real code of m
block method

27

(Observation)
of comparisons ＝ # of searched blocks

＋ # of comparisons in the block

When you find former block, you can use more time in the block
It is better to decrease the length of blocks

・For example, we set |Bi+1|=|Bi|-1
・Make “index”+”length of a block” constant

Discussion of m block method

• Lengths of blocks should be the same?

28

【Pretty maniac】

In reality, this kind of method of decreasing “unevenness” is preferred.

Can we do better than O(√n)?

29

In the m-block method, we use sequential search in each block.
We can use m-block method again in the block!!

For example, if the number of data is 27,
• Linear search requires 27 in the worst case
• 3-block method requires at most 3+9
• Double 3-block method needs at most 3+3+3

Idea of double m-block method

Algorithm 3: Double m-block method

30

In the m-block method, we use sequential search in each block.
We can use m-block method again in the block!!

Divide search area into ｍ blocks, and repeat the same
process for the block that contains ｘ, and repeat again and
again up to the block has length at most some constant N

Idea of double m-block method

Algorithm 3: Double m-block method

31

Recursive call: basic and strong idea

Why we stop only twice? We can more!!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s 3 4 6 7 9 11 14 15 17 18 20 23 24 26 27 29 30 32

Example:
find 20 (x=20) for block size 3

32

Analysis of time complexity

• Length of search space

• Let ni be the length after the i-th call

33

【I don’t ask you to compute it by yourself…】

Analysis of time complexity
• The length ni after the i-th recursive call:

ni≦ n/mi + 2
• How many recursive calls made?

• Each recursive call make at most m-1
comparisons, so the total number of
comparisons is

• The time complexity is O(log n)
34

【I don’t ask you to compute it by yourself…】

Analysis of time complexity:
The best value of m

35

•

• To make T(n,m) the minimum, smaller m is
better because m-1 grows faster than log2 m
(which will be checked in the big-O notation).

• Therefore, m=2 is the optimal

We will have “binary search”

【I don’t ask you to compute it by yourself…】

[Summary]
• For unorganized data, we have to use O(n) time.
• If data are sorted in increasing order,

– We can exit from the loop when we find the position of x
– Improved to O(√n) with m-block method with m=√n
– Improved to O(log n) with doubly m-block method with m=2

• Honestly, in recent programming environment, you do
not need to make such a search by yourself.

• Usually, we use a function indexOf(). However, it is very
important that you should know that
– “indexOf is heavy” for unorganized data
– “indexOf is light” for SortedList

36

	I111E Algorithms & Data Structures�3. Basic Programming
	Search Problem
	Search Problem
	How to tackle the problem
	Data structure 1�Data are stored in arbitrary ordering
	Sequential search
	Example: Real code of seq. search
	Precise time complexity of sequential search
	Programming tips 1: �simplify by using “sentinel”
	Analysis of the number of comparisons
	What happens�if we use �“nice” data structure?�
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Data structure 2�Data in the array in increasing order
	Example: Real code of seq. search in increasing order
	Minor improvements of number of comparisons in sequential search
	Drastic Improvement from O(n)
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Algorithm 2: m-block method
	Example and time complexity
	Example: �Real code of m block method
	Discussion of m block method
	Can we do better than O(√n)?
	Algorithm 3: Double m-block method
	Algorithm 3: Double m-block method
	Example: �find 20 (x=20) for block size 3
	Analysis of time complexity
	Analysis of time complexity
	Analysis of time complexity: �The best value of m
	[Summary]

